Advertisement

Numerical Simulations of a Massively Separated Reactive Flow Using a DDES Approach for Turbulence Modelling

  • Bruno Sainte-Rose
  • Nicolas Bertier
  • Sébastien Deck
  • Francis Dupoirieux
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

Computations of a lean premixed methane - air flame in a lean stepped combustor are performed using a Delayed Detached Eddy Simulation approach to model turbulence. Two conditions for the outlet section are simulated and compared to an experimental database including mean velocity, mean temperature and instantaneous OH* emission measurements. The main objective of this study is to assess of the efficiency of DDES for a massively separated reactive flow.

Keywords

Large Eddy Simulation Reactive Flow Strouhal Number Turbulent Combustion Outlet Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poinsot, T., Veynante, D.: Theoretical and numerical combustion, R.T. Edwards Ed. (2001)Google Scholar
  2. 2.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)zbMATHCrossRefGoogle Scholar
  3. 3.
    Menter, F.R.: Zonal two-equation k-omega turbulence models for aerodynamic flows, AIAA 1993-2906 (1993)Google Scholar
  4. 4.
    Sainte-Rose, B., Bertier, N., Deck, S., Dupoirieux, F.: A DES method applied to a Backward Facing Step reactive flow. C.R. Meca 337, 340–351 (2009)Google Scholar
  5. 5.
    Strelets, M.K.: Detached-Eddy Simulation of Massively Separated Flows, AIAA 2001-0879 (2001)Google Scholar
  6. 6.
    Sagaut, P., Deck, S., Terracol, M.: Multiscale and multiresolution approaches in turbulence. Imperial College Press, London (2006)CrossRefGoogle Scholar
  7. 7.
    Spalart, P.R.: Detached Eddy Simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)CrossRefGoogle Scholar
  8. 8.
    Legier, J.P., Poinsot, T., Veynante, D.: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. In: Proceedings of the Center for Turbulence Research (2000)Google Scholar
  9. 9.
    Moreau, P., Labbe, J., Dupoirieux, F., Borghi, R.: Experimental and numerical study of a turbulent recirculation zone with combustion. In: 5th Symposium on Turbulence and Shear Flow (1985)Google Scholar
  10. 10.
    Sabelnikov, V., Grisch, F., Orain, M.: Instabilities and structure of turbulent premixed flame in a lean stepped combustor, paper ISABE-2005-1059 (2005)Google Scholar
  11. 11.
    Magre, P., Collin, G., Bouchardy, P.: Application de la DRASC à l’opération A3C (french). Onera Technical Report (1996)Google Scholar
  12. 12.
    Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible reacting flows. J. Comput. Phys. 101, 104–129 (1992)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bruno Sainte-Rose
    • 1
  • Nicolas Bertier
    • 1
  • Sébastien Deck
    • 2
  • Francis Dupoirieux
    • 3
  1. 1.Onera (Fundamental and Applied Energetics Department)Châtillon
  2. 2.Onera (Applied Aerodynamics Department)Meudon
  3. 3.Onera (Fundamental and Applied Energetics Department)Palaiseau

Personalised recommendations