Advertisement

Modeling of High Reynolds Number Flows with Solid Body Rotation or Magnetic Fields

  • Annick Pouquet
  • Julien Baerenzung
  • Jonathan Pietarila Graham
  • Pablo Mininni
  • Hélène Politano
  • Yannick Ponty
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

We present two models for turbulent flows with periodic boundary conditions and with either rotation, or a magnetic field in the magnetohydrodynamics (MHD) limit. One model, based on Lagrangian averaging, can be viewed as an invariant-preserving filter, whereas the other model, based on spectral closures, generalizes the concepts of eddy viscosity and eddy noise. These models, when used separately or in conjunction, may lead to substantial savings for modeling high Reynolds number flows when checked against high resolution direct numerical simulations (DNS), the examples given here being run on grids of up to 15363 points.

Keywords

Eddy Viscosity Rossby Number Solid Body Rotation Inverse Cascade Magnetic Prandtl Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Montgomery, D., Pouquet, A.: An alternative interpretation for the Holm “alpha” model. Phys. Fluids 14, 3365–3366 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, S.Y., Holm, D.D., Margolin, L.G., Zhang, R.: Direct numerical simulations of the Navier-Stokes alpha model. Physica D 133, 66–83 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Foias, C., Holm, D.D., Titi, E.S.: The Navier-Stokes-alpha model of fluid turbulence. Physica D 152-153, 505–519 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Holm, D.D.: Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics. Chaos 12, 518–530 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chen, S., et al.: A connection between the Camassa-Holm equations and turbulent ßows in channels and pipes. Phys. Fluids 11, 2343–2353 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Nadiga, B., Shkoller, S.: Enhancement of the inverse-cascade of energy in the 2D Lagrangian-averaged Navier-Stokes equations. Phys. Fluids 13, 1528–1531 (2001)CrossRefGoogle Scholar
  7. 7.
    Mininni, P., Montgomery, D., Pouquet, A.: Numerical solutions of the three-dimensional MHD alpha model. Phys. Fluids 17, 035112 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Pietarila Graham, J., et al.: Inertial Range Scaling, Kármán Theorem and Intermittency for Forced and Decaying Lagrangian Averaged MHD in 2D. Phys. Fluids 18, 045106 (2006)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Pietarila Graham, J., et al.: Highly turbulent solutions of LANS-α and their LES potential. Phys. Rev. E 76, 056310 (2007)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Pietarila Graham, J., et al.: Three regularization models of the Navier-Stokes equations. Phys. Fluids 20, 035107 (2008)CrossRefGoogle Scholar
  11. 11.
    Pietarila Graham, J., Mininni, P., Pouquet, A.: The Lagrangian-averaged model for MHD turbulence and the absence of bottleneck. Phys. Rev. E (2009) (to appear), arxiv/0806.2054v1Google Scholar
  12. 12.
    Graham, J., Mininni, P., Pouquet, A.: Cancellation exponent and multifractal structure in Lagrangian averaged magnetohydrodynamics. Phys. Rev. E 72, 045301(R) (2005)CrossRefGoogle Scholar
  13. 13.
    Orszag, S., Kruskal, M.: Formulation of the theory of turbulence. Phys. Fluids 11, 43–60 (1968)zbMATHCrossRefGoogle Scholar
  14. 14.
    Baerenzung, J., et al.: Spectral Modeling of Turbulent Flows and the Role of Helicity. Phys. Rev. E 77, 046303 (2008)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Baerenzung, J., et al.: Spectral Modeling of Magnetohydrodynamic Turbulent Flows. Phys. Rev. E 78, 026310 (2008)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Mininni, P., Alexakis, A., Pouquet, A.: Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers. Phys. Fluids 21, 015108 (2009)CrossRefGoogle Scholar
  17. 17.
    Mininni, P., Pouquet, A.: Helicity cascades in rotating turbulence. Phys. Fluids (2009) (to appear); See also arxiv:0809.0869Google Scholar
  18. 18.
    Baerenzung, J., et al.: Modeling of rotating flows at moderate Rossby numbers. Phys. Rev. E (2009) (submitted); See also arXiv:0812.1821v1Google Scholar
  19. 19.
    Baerenzung, J., et al.: Modeling of rotating flows with helicity (2009) (in preparation)Google Scholar
  20. 20.
    Chollet, J.P., Lesieur, M.: Parametrization of small-scale three-dimensional isotropic turbulence using spectral closures. J. Atmos. Sci. 38, 2747–2757 (1981)CrossRefGoogle Scholar
  21. 21.
    André, J.C., Lesieur, M.: Influence of Helicity on the Evolution of Isotropic Turbulence at High Reynolds Number. J. Fluid Mech. 81, 187–207 (1977)zbMATHCrossRefGoogle Scholar
  22. 22.
    Sagaut, P., Cambon, C.: Homogeneous Turbulence Dynamics. Cambridge Univ. Press, Cambridge (2008)zbMATHCrossRefGoogle Scholar
  23. 23.
    Cambon, C., Scott, J.F.: Linear and nonlinear models of anisotropic turbulence. Ann. Rev. Fluid Mech. 31, 1–53 (1999)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Cambon, C., Rubinstein, R., Godeferd, F.S.: Advances in wave turbulence: rapidly rotating flows. New J. Phys. 6(73), 1–29 (2004)MathSciNetGoogle Scholar
  25. 25.
    Cui, G.X., et al.: A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence. J. Fluid Mech. 582, 377–397 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Childress, S., Gilbert, A.: Stretch, Twist, Fold: The Fast Dynamo. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  27. 27.
    Mininni, P., Pouquet, A.: Persistent cyclonic structures in self-similar turbulent flows. Phys. Rev. Lett. arXiv:0903.2294 (2009) (submitted)Google Scholar
  28. 28.
    Ponty, Y., et al.: Critical magnetic Reynolds number for dynamo action as a function of magnetic Prandtl number. Phys. Rev. Lett. 94, 164502 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Annick Pouquet
    • 1
  • Julien Baerenzung
    • 1
  • Jonathan Pietarila Graham
    • 2
  • Pablo Mininni
    • 3
  • Hélène Politano
    • 4
  • Yannick Ponty
    • 4
  1. 1.NCARBoulderUSA
  2. 2.MPI für SonnensystemforschungKatlenburgGermany
  3. 3.Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad Universitaria, NCARBuenos AiresArgentina
  4. 4.Observatoire de la Côte D’AzurNiceFrance

Personalised recommendations