A Novel Numerical Method for Turbulent, Two-Phase Flow

  • A. Pecenko
  • J. G. M. Kuerten
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


A novel approach to the simulation of isothermal, turbulent two-phase (liquid/vapour) flow is presented. The two-phase nature of the flow is modeled by means of a diffuse-interface concept and of the Korteweg tensor of capillary forces at the interface, so that a single system of compressible Navier-Stokes equations can be written for the whole flow domain. A Van der Waals equation of state is also included to account for the variation of pressure with density at the given value of temperature. After explanation of a stable numerical method, results of a classic benchmark problem are shown. Next, subgrid terms related to the nonlinear pressure and capillary terms are studied by means of an a priori analysis based on DNS results, and a subgrid model for these terms is proposed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)CrossRefGoogle Scholar
  3. 3.
    Cahn, J.W.: Free energy of a nonuniform system. II. Thermodynamic basis. J. Chem. Phys. 30(5), 1121–1124 (1959)CrossRefGoogle Scholar
  4. 4.
    Cockburn, B., Gau, H.: A model numerical scheme for the propagation of phase transitions in solids. SIAM J. Sci. Comput. 17(5), 1092–1121 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Korteweg, D.J.: Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues. Arch. Néerl. Sci. Exactes Nat. Série II, Tome VI, 1–24 (1901)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. Pecenko
    • 1
  • J. G. M. Kuerten
    • 1
  1. 1.Dept. of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations