Advertisement

Measurement of Particle Accelerations with the Laser Doppler Technique

  • H. Nobach
  • M. Kinzel
  • R. Zimmermann
  • C. Tropea
  • E. Bodenschatz
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

An extension of the laser Doppler technique for measuring particle acceleration is presented. The basic principles of the technique follow closely those introduced in [11], although numerous improvements have been implemented in the signal processing for increasing the reliability of individual estimates of particle acceleration. The main contribution of this study is to identify and quantify the errors due to optical fringe divergence in the detection volume of the present laser Doppler system, to introduce an appropriate experiment involving a falling wire and to compare the acceleration measurements of the laser Doppler system to the results of a particle tracking system with high-speed cameras in a highly turbulent flow. Noteworthy is the fact that all measurements were performed with a commercial off-the-shelf laser Doppler system.

Keywords

Particle Image Velocimetry Particle Acceleration Beam Waist Particle Tracking Velocimetry Acceleration Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, H.-E., Damaschke, N., Borys, M., Tropea, C.: Laser Doppler and Phase Doppler Measurement Techniques. Springer, Berlin (2003)Google Scholar
  2. 2.
    Christensen, K.T., Adrian, R.J.: Measurement of instantaneous Eulerian acceleration fields by particle-image velocimetry: method and accuracy. Exp. in Fluids 33, 759–769 (2002)Google Scholar
  3. 3.
    Dong, P., Hsu, T.-Y., Atsavapranee, P., Wei, T.: Digital particle image accelerometry. Exp. in Fluids 30(6) (2001)Google Scholar
  4. 4.
    Jakobsen, M.L., Dewhirst, T.P., Greated, C.A.: Particle image velocimetry for predictions of acceleration fields and force within fluid flows. Meas. Sci. Technol. 8, 1502–1516 (1997)CrossRefGoogle Scholar
  5. 5.
    Jensen, A., Pedersen, G.K.: Optimization of acceleration measurements using PIV. Meas. Sci. Technol. 15, 2275–2283 (2004)CrossRefGoogle Scholar
  6. 6.
    Jensen, A., Pedersen, G.K., Wood, D.J.: An experimental study of wave run-up at a steep beach. J. Fluid Mech. 486, 161–188 (2003)zbMATHCrossRefGoogle Scholar
  7. 7.
    Jensen, A., Sveen, J.K., Grue, J., Richon, J.-B., Gray, C.: Accelerations in water waves by extended particle image velocimetry. Exp. in Fluids 30, 500–510 (2001)CrossRefGoogle Scholar
  8. 8.
    La Porta, A., Voth, G.A., Crawford, A.M., Alexander, J., Bodenschatz, E.: Fluid particle accelerations in fully developed turbulence. Nature 409, 1017–1019 (2001)CrossRefGoogle Scholar
  9. 9.
    Lehmann, B., Helbig, A., Hassa, C.: LDA method to measure the acceleration of particles and the curvature radii of particle trajectories. In: Proc. 5th Int. Symp. on Appl. of Laser Techn. to Fluid Mechanics, Lisbon, Portugal (1990), paper 22.3Google Scholar
  10. 10.
    Lehmann, B., Helbig, J.: Local acquisition of mean and turbulent fluid acceleration in highly turbulent flow by the means of laser-Doppler velocimetry. In: Proc. 10th Int. Symp. on Appl. of Laser Techn. to Fluid Mechanics, Lisbon, Portugal (2000)Google Scholar
  11. 11.
    Lehmann, B., Nobach, H., Tropea, C.: Measurement of acceleration using the laser Doppler technique. Meas. Sci. Technol. 13(9), 1367–1381 (2002)CrossRefGoogle Scholar
  12. 12.
    Liu, X., Katz, J.: Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exp. in Fluids 41, 227–240 (2006)CrossRefGoogle Scholar
  13. 13.
    Nobach, H.: Gegen Wavelets & Co. — Vorteile klassischer Signal- und Datenverarbeitungsverfahren in der optischen Strömungsmesstechnik. Shaker, Aachen. TU Darmstadt, Zugl., Habil (2007) ISBN 978-3-8322-6564-9Google Scholar
  14. 14.
    Nobach, H., Kinzel, M., Tropea, C.: Measurement of Lagrangian acceleration in turbulent flows using the laser Doppler technique. In: Proc. of SPIE Optical Methods of Flow Investigation, vol. 6262, pp. 1–8 (2006)Google Scholar
  15. 15.
    Ouellette, N.T., Xu, H., Bodenschatz, E.: A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp. in Fluids 40 (2006)Google Scholar
  16. 16.
    Voth, G.A., La Porta, A., Crawford, A.M., Alexander, J., Bodenschatz, E.: Measurement of particle accelerations in fully developed turbulence. J. of Fluid Mechanics 469, 121–160 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Voth, G.A., La Porta, A., Crawford, A.M., Bodenschatz, E., Ward, C., Alexander, J.: A silicon strip detector system for high resolution particle tracking in turbulence. Rev. Sci. Instrum. 72(12), 4348–4353 (2001)CrossRefGoogle Scholar
  18. 18.
    Yang, T.S., Shy, S.S.: Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements. J. Fluid Mech. 526, 171–216 (2005)zbMATHCrossRefGoogle Scholar
  19. 19.
    Zimmermann, R.: The Lagrangian exploration module. Master’s thesis, Georg-August-Universität Göttingen, Fachbereich Physik (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • H. Nobach
    • 1
  • M. Kinzel
    • 2
  • R. Zimmermann
    • 3
  • C. Tropea
    • 2
  • E. Bodenschatz
    • 1
  1. 1.Max Planck institute for Dynamics and Self-OrganisationGöttingenGermany
  2. 2.Chair of Fluid Mechanics and AerodynamicsDarmstadt University of TechnologyDarmstadtGermany
  3. 3.Laboratoire de physique ENS LyonLyon Cedex 07France

Personalised recommendations