Experimental and Numerical Study of Unsteadiness in Boundary Layer / Shock Wave Interaction

  • L. Larchevêque
  • P. Dupont
  • E. de Martel
  • E. Garnier
  • J. -F. Debiève
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


The unsteady flowfield induced by an interaction between an impinging shock wave and a turbulent boundary layer is analysed by means of both Large-Eddy simulations and experiments relying on PIV and wall pressure measurements. A simple kinematic model is derived from these analyses and demonstrates a good ability to reproduce the main unsteady features found in the data.


Turbulent Boundary Layer Wall Pressure Oblique Shock Reattachment Point Shock Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Debiève, J.F., Dupont, P.: Dependence between shock and separation bubble in a shock wave / boundary layer interaction. In: IUTAM Symposium on Unsteady Separated Flows and their Control, Corfu, Greece (2007)Google Scholar
  2. 2.
    Delery, J., Marvin, J.G.: Shock wave–boundary layer interactions. AGARDograph AG-280, AGARD (1986)Google Scholar
  3. 3.
    Dolling, D.S.: Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39(8), 1517–1531 (2001)CrossRefGoogle Scholar
  4. 4.
    Dupont, P., Haddad, C., Ardissone, J.P., Debiève, J.F.: Space and time organisation of a shock wave/turbulent boundary layer interaction. Aerospace Science and Technology 9(7), 561–572 (2005)CrossRefGoogle Scholar
  5. 5.
    Dupont, P., Haddad, C., Debiève, J.F.: Space and time organization in a shock induced boundary layer. J. Fluid Mech. 559, 255–277 (2006)zbMATHCrossRefGoogle Scholar
  6. 6.
    Dupont, P., Piponniau, S., Sidorenko, A., Debiève, J.F.: Investigation of an oblique shock reflection with separation by PIV measurements. AIAA J. 46(6) (2008)Google Scholar
  7. 7.
    de Martel, E., Garnier, E., Sagaut, P.: Large eddy simulation of impinging shock wave / turbulent boundary layer interaction at M=2.3. In: IUTAM Symposium on Unsteady Separated Flows and their Control, Corfu, Greece (2007)Google Scholar
  8. 8.
    Piponniau, S., Dussauge, J.P., Debieve, J.F., Dupont, P.: A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87–108 (2009)zbMATHCrossRefGoogle Scholar
  9. 9.
    Thomas, F.O., Putman, C.M., Chu, H.C.: On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interaction. Experiments in Fluids 18, 69–81 (1994)CrossRefGoogle Scholar
  10. 10.
    Touber, E., Sandham, N.D.: Oblique shock impinging on a turbulent boundary layer: low-frequency mechanisms. In: 38th AIAA Fluid Dynamics Conference, Seattle, United State (2008)Google Scholar
  11. 11.
    Wu, M., Martin, M.P.: Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 45(4), 879–889 (2007)CrossRefGoogle Scholar
  12. 12.
    Wu, M., Martin, M.P.: Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 71–83 (2008)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • L. Larchevêque
    • 1
  • P. Dupont
    • 1
  • E. de Martel
    • 2
  • E. Garnier
    • 2
  • J. -F. Debiève
    • 1
  1. 1.IUSTIUMR CNRS 6595, Aix-Marseille I UniversityMarseilleFrance
  2. 2.Applied Aerodynamics DepartmentONERAMeudonFrance

Personalised recommendations