Advertisement

Turbulence Interaction with Atmospheric Physical Processes

  • Chin-Hoh Moeng
  • Jeffrey Weil
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

This article reviews the planetary-boundary-layer (PBL) turbulence and its interactions with atmospheric processes. We show three examples: turbulence response to surface heating and cooling over lands, effects of ocean waves, and interactions with radiation and cloud microphysics.We also show how computational fluid dynamics methods are used to gain fundamental understanding of these interactions mostly under idealized environments. For certain practical applications in which idealized conditions may not apply, a brute-force method may be needed to explicitly simulate the turbulence interaction. One way is to nest a large-eddy simulation domain inside a weather forecast model, and to allow for turbulence feedback to other physical processes. This numerical method sounds straightforward but poses two major problems. We suggest a systematic approach to examine the problems.

Keywords

Turbulent Kinetic Energy Planetary Boundary Layer Cloud Microphysics Weather Forecast Model Turbulence Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bretherton, C.S. (co-authors): An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Q.J.R.M.S. 125, 391–423 (1999)CrossRefGoogle Scholar
  2. 2.
    Chow, F.K., Weigel, A.P., Street, R.L., Rotach, M.W., Xue, M.: High-resolution large-eddy simulations of flow in a steep Alpine valley, Part I: Methodology, verification, and sensitivity experiments. J. Applied Meteorology and Climatology 45, 63–73 (2006)CrossRefGoogle Scholar
  3. 3.
    Emanuel, K.: Tropical cyclone energetics and structure. In: Fedorovich, E., Rotunno, R., Stevens, B. (eds.) Atmospheric Turbulence and Mesoscale Meteorology, pp. 165–191. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  4. 4.
    Finnigan, J.J.: Turbulence in waving wheat II: Structure of momentum transfer. Boundary-Layer Meteorol. 16, 213–236 (1979)CrossRefGoogle Scholar
  5. 5.
    Gao, W., Shaw, R.H., Paw, U.K.T.: Observation of organized structure in turbulent flow within and above a forest canopy. Boundary-Layer Meteorol. 47, 349–377 (1989)CrossRefGoogle Scholar
  6. 6.
    Mahrt, L.: Stratified atmospheric boundary layers. Boundary-Layer Meteorology 90, 375–396 (1999)CrossRefGoogle Scholar
  7. 7.
    Moeng, C.H.: Large-eddy simulation of a stratus-topped boundary layer. Part I: Structure and budgets. J. Atmos. Sci. 43, 2886–2900 (1986)CrossRefGoogle Scholar
  8. 8.
    Moeng, C.H., Shen, S., Randall, D.A.: Physical processes within the nocturnal stratus-topped boundary layer. J. Atmos. Sci. 49, 2384–2401 (1992)CrossRefGoogle Scholar
  9. 9.
    Moeng, C.H., Dudhia, J., Klemp, J., Sullivan, P.P.: Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Wea. Rev. 135, 2295–2311 (2007)CrossRefGoogle Scholar
  10. 10.
    Moeng, C.H. (co-authors): Simulation of a stratocumulus-topped planetary boundary layer: Intercomparison among different numerical codes. Bull. Amer. Meteor. Soc. 77, 261–278 (1996)Google Scholar
  11. 11.
    Patton, E.G., Sullivan, P.P., Davis, K.J.: The influence of a forets canopy on top-down and bottom-up diffusion in the planetary boundary layer. Q.J.R. Meteorol. Soc. 129, 1415–1434 (2003)CrossRefGoogle Scholar
  12. 12.
    Randall, D.A., Coakley, J.A., Fairall, C.W., Kropfli, R.A., Lenschow, D.H.: Outlook for research on subtropical marine stratiform clouds. Bull. Amer. Meteor. Soc. 65, 1290–1301 (1984)CrossRefGoogle Scholar
  13. 13.
    Rasch, P.J., Chen, C.-C., Latham, J.: The impact of cloud seeding of marine stratocumulus on the ocean. Geophysical Research Abstracts, 10, EGU2008-A-12211 (2008)Google Scholar
  14. 14.
    Shaw, R.H., Schumnn, U.: Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol. 61, 47–64 (1992)CrossRefGoogle Scholar
  15. 15.
    Stevens, B. (co-authors): Dynamics and chemistry of marine stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc. 84, 579–593 (2003)CrossRefGoogle Scholar
  16. 16.
    Stevens, B. (co-authors): Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev. 133, 1443–1462 (2005)CrossRefGoogle Scholar
  17. 17.
    Sullivan, P.P., McWilliams, J.C., Moeng, C.H.: Simulation of turbulent flow over idealized water waves. J. Fluid Mech. 404, 47–85 (2000)zbMATHCrossRefGoogle Scholar
  18. 18.
    Sullivan, P.P., McWilliams, J.C., Melville, W.K.: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech. 593, 405–452 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sullivan, P.P., Edson, J.B., Hristov, T., McWilliams, J.C.: Large eddy simulations and observations of atmospheric marine boundary layers above non-equilibrium surface waves. J. Atmos. Sci. 65, 1225–1245 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chin-Hoh Moeng
    • 1
  • Jeffrey Weil
    • 2
  1. 1.National center for Atmospheric ResearchBoulderUSA
  2. 2.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulder

Personalised recommendations