Time-Resolved 3D Simulation of an Aircraft Wing with Deployed High-Lift System

  • Thilo Knacke
  • Frank Thiele
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


The turbulent flow around a high-lift configuration consisting of slat, main element and flap is simulated at a Reynolds number of 1.7 × 106 with an implicit finite-volume based numerical method. The 3D unsteady motion in separated flow regions is resolved on a 25 million volume mesh employing the recent Delayed Detached-Eddy Simulation (DDES) approach [12]. Compressible calculations and the use of non-reflecting boundary conditions enable sound radiation to be captured in the simulation. The presented results cover the first step in a two-step approach towards the prediction of noise emitted into the acoustic farfield and provide insight into the complex flow dynamics in the slat region. The computed pressure distributions, statistics and spectra exhibit good agreement with findings from NASA Langley Research Center (LaRC) [2, 5].


Shear Layer Sound Radiation Trail Edge Spanwise Vorticity NASA Langley Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bogey, C., Bailly, C.: Three-dimensional non-reflective boundary conditions for acoustic simulations: far-field formulation and validation test cases. Acta Acustica united with Acustica 88, 463–471 (2002)Google Scholar
  2. 2.
    Choudhari, M.M., Khorrami, M.R.: Effect of three-dimensional shear-layer structures on slat cove unsteadiness. AIAA Journal 45(9), 2174–2186 (2007)CrossRefGoogle Scholar
  3. 3.
    Deck, S.: Zonal-detached eddy simulation of the flow around a high-lift configuration. AIAA Journal 43(11), 2372–2384 (2005)CrossRefGoogle Scholar
  4. 4.
    Dobrzynski, W., Pott-Pollenske, M.: Slat noise source studies for farfield noise prediction. AIAA Paper 2001-2158 (2001)Google Scholar
  5. 5.
    Jenkins, L.N., Khorrami, M.R., Choudhari, M.M.: Characterization of unsteady flow structures near leading-edge slat: Part I. PIV measurements. AIAA Paper 2004-2801 (2004)Google Scholar
  6. 6.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Knacke, T., Thiele, F.: Slat noise reduction using steady suction. AIAA Paper 2008-17 (2008)Google Scholar
  8. 8.
    König, D., Schröder, W., Meinke, M.: Large-eddy simulation of the flow around a high-lift airfoil configuration. In: Proc. of 5th Intern. Symp. on Turb. and Shear Flow Phenom., Munich, vol. 2, pp. 885–890 (2007)Google Scholar
  9. 9.
    Lien, F.S., Leschziner, M.: A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, Part 1: Computational implementation. Comput. Methods Appl. Mech. Engrg. 114, 123–148 (1994)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Mockett, C.: A comprehensive study of detached-eddy simulation. Ph.D. thesis, Technische Universität Berlin (2009)Google Scholar
  11. 11.
    Rung, T., Bunge, U., Schatz, M., Thiele, F.: Restatement of the Spalart-Allmaras Eddy Viscosity Model in Strain-Adaptive Formulation. AIAA Journal 41(7), 1396–1399 (2003)CrossRefGoogle Scholar
  12. 12.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)zbMATHCrossRefGoogle Scholar
  13. 13.
    Travin, A., Shur, M., Strelets, M., Spalart, P.R.: Physical and numerical upgrades in the Detached Eddy Simulation of complex turbulent flows. In: Friederich, R., Rodi, W. (eds.) Advances in LES of Complex Flows. Fluid Mechanics and it’s Applications, vol. 65, pp. 239–254 (2002)Google Scholar
  14. 14.
    Xue, L.: Entwicklung eines effizienten parallelen Lösungsalgorithmus zur dreidimensionalen Simulation komplexer turbulenter Strömungen. Ph.D. thesis, Technische Universität Berlin (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thilo Knacke
    • 1
  • Frank Thiele
    • 1
  1. 1.Institut für Strömungsmechanik und Technische AkustikTechnische Universität BerlinBerlinGermany

Personalised recommendations