Local versus Nonlocal Processes in Turbulent Flows, Kinematic Coupling and General Stochastic Processes

  • Michael Kholmyansky
  • Vladimir Sabelnikov
  • Arkady Tsinober
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


In this paper we show that the role of kinematic relationships in the issue of nonlocality goes far beyond their use in the nonlocal interpretation of the Kolmogorov 4/5 law and applicable also to general stochastic processes, unrelated to the N-S equation.We put special emphasis on this aspect pointing to a large number of such relations for the structure functions expressed via terms all of which have the form of correlations between large- and small-scale quantities, and giving examples of their experimental verification at large Reynolds numbers in field and airborne experiments.


Inertial Range Kinematic Relation Israel Science Foundation Mixed Moment Kinematic Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A., Yorish, S.: Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 1. Facilities, methods and some general results. J. Fluid Mech. 589, 57–81 (2007)zbMATHGoogle Scholar
  2. 2.
    Hosokawa, I.: A Paradox concerning the refined similarity hypothesis of Kolmogorov for isotropic turbulence. Prog. Theor. Phys. 118, 169–173 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kholmyansky, M., Tsinober, A.: Kolmogorov 4/5 law, nonlocality, and sweeping decorrelation hypothesis. Phys. Fluids 20, 041704/1–4 (2008)CrossRefGoogle Scholar
  4. 4.
    Kholmyansky, M., Sabelnikov, V., Tsinober, A.: New developments in field experiments in ASL: Kolmogorov 4/5 law and nonlocality. In: 18th AMS Symposium on Boundary Layers and Turbulence, Stockholm, June 9–12 (2008),
  5. 5.
    Kolmogorov, A.N.: Dissipation of energy in locally isotropic turbulence. Dokl. Acad. Nauk SSSR 32, 19–21 (1941); for English translation see: Selected works of A. N. Kolmogorov, I, Tikhomirov, V.M. (ed.), pp. 324–327. Kluwer, Dordrecht (1991)Google Scholar
  6. 6.
    Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics. In: Lumley, J. (ed.), vol. 2. MIT Press, Cambridge (1975)Google Scholar
  7. 7.
    Sabelnikov, V.: Obtained a number of kinematic relations between Δu = (u 2 − u 1), u 1= u(x) and u 2= u(x + r): Two presentations made in Laboratoire de mecanique des fluids et d’acoustique, Ecole centrale de Lyon: 1) Large Reynolds-Number Asymptotics of Karman–Howarth Equation, May 26; 2) Kolmogorov’s local isotropy turbulence theory: state-of-the art, June 27 (1994)Google Scholar
  8. 8.
    Tsinober, A.: An Informal Introduction to Turbulence. Kluwer, Dordrecht (2001)zbMATHGoogle Scholar
  9. 9.
    Tsinober, A.: Nonlocality in turbulence. In: Donnelly, R.J., Winen, W.F., Barenghi, C. (eds.) Quantized Vortex Dynamics and Superfluid Turbulence, pp. 389–395. Springer, New York (2001)CrossRefGoogle Scholar
  10. 10.
    Tsinober, A.: Nonlocality in turbulence. In: Gyr, A., Kinzelbach, W. (eds.) Sedimentation and Sediment Transport: At the Crossroads of Physics and Engineering, pp. 11–22. Kluwer Academic, Dordrecht (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Kholmyansky
    • 1
  • Vladimir Sabelnikov
    • 2
  • Arkady Tsinober
    • 1
  1. 1.Tel-Aviv UniversityTel-AvivIsrael
  2. 2.ONERAPalaiseauFrance

Personalised recommendations