Advertisement

On the Role of Coherent Structures in a Lid Driven Cavity Flow

  • Benjamin Kadoch
  • Emmanuel Leriche
  • Kai Schneider
  • Marie Farge
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

The coherent vortex extraction (CVE) is a technique based on the nonlinear filtering of the vorticity field projected onto an orthonormal wavelet basis. The coherent vortices of the flow are reconstructed from few strong wavelet coefficients, while the incoherent background flow corresponds to the majority of weak wavelet coefficients. Here CVE is applied to a lid driven cavity flow. Only 2.3% of wavelet coefficients are necessary to capture the coherent structures and contains almost all the enstrophy. The incoherent flow, which is the remaining, is structureless and noise-like. The results show that lid driven cavity flows are characterized by the presence of pronounced coherent structures.

Keywords

Direct Numerical Simulation Coherent Structure Compression Rate Direct Numerical Simulation Data Coherent Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azzalini, A., Farge, M., Schneider, K.: Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold. Appl. Comput. Harmon. Anal. 18, 177 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bouffanais, R., Deville, M.O., Leriche, E.: Large-Eddy Simulation of the flow in a Lid-Driven Cubical Cavity. Physics of Fluids 19(5), 055108 (2007)CrossRefGoogle Scholar
  3. 3.
    Donoho, D., Johnstone, I.: Ideal spatial adaptation via wavelet shrink-age. Biometrika 81, 425 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Farge, M., Pellegrino, G., Schneider, K.: Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets. Phys. Rev. Lett. 97, 054501 (2001)CrossRefGoogle Scholar
  5. 5.
    Habisreutinger, M.A., Bouffanais, R., Leriche, E., Deville, M.O.: A Coupled Approximate Deconvolution and Dynamic Mixed Scale Model for Large-Eddy Simulation. Journal of Computational Physics 224(1), 241–266 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Leriche, E., Gavrilakis, S.: Direct Numerical Simulation of the Flow in a Lid-Driven Cubical Cavity. Physics of Fluids 12(6), 1363–1376 (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Leriche, E.: Direct Numerical Simulation in a Lid-Driven Cubical Cavity at High Reynolds Number by a Chebyshev Spectral Method. Journal of Scientific Computing 27(1-3), 335–345 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Prasad, A.K., Koseff, J.R.: Reynolds number and end-wall effects on a lid-driven cavity flow. Physics of Fluids 1(2), 208–218 (1989)CrossRefGoogle Scholar
  9. 9.
    Shankar, P.N., Deshpande, M.D.: Fluid Mechanics in the driven cavity. Annu. Rev. Fluid Mech. 2000 32, 93–136 (2000)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Benjamin Kadoch
    • 1
  • Emmanuel Leriche
    • 2
  • Kai Schneider
    • 1
  • Marie Farge
    • 3
  1. 1.M2P2–UMR 6181 CNRS & CMI, Universités d’Aix-MarseilleMarseille Cedex 13France
  2. 2.Faculté des Sciences et TechniquesUniversité Jean-MonnetSaint-ÉtienneFrance
  3. 3.LMD–CNRS, ENSParis Cedex 5France

Personalised recommendations