Study on the Resolution Requirements for DNS in Turbulent Rayleigh-Bénard Convection

  • M. Kaczorowski
  • C. Wagner
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


In fundamentel research the geometrically simple Rayleigh-Bénard experiment is often chosen to investigate the turbulent heat exchange between a thermally driven fluid and a hot bottom and a cold top wall, respectively.


Nusselt Number Rayleigh Number Direct Numerical Simulation Thermal Boundary Layer Thermal Plume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amati, G., Koal, K., Massaioli, F., Sreenivasan, K.R., Verziccio, R.: Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number. Phys. Fluids 17(121701) (2005)Google Scholar
  2. 2.
    Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Mathematics of Computations 22, 745–762 (1968)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Emran, M.S., Schumacher, J.: Fine-scale statistics of the temperature derivatives in convective turbulence. J. Fluid Mech. 611, 13–34 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Grötzbach, G.: Spatial resolution requirements for direct numerical simulation of Rayleigh-Bénard convection. J. Comp. Phys. 49, 241–264 (1983)zbMATHCrossRefGoogle Scholar
  5. 5.
    Kaczorowski, M., Wagner, C.: Analysis of the thermal plumes in turbulent Rayleigh-Bénard convection based on well-resolved numerical simulations. J. Fluid Mech. 618, 89–112 (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Kerr, R.M.: Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 31–58 (1985)zbMATHCrossRefGoogle Scholar
  7. 7.
    Schumann, U., Grötzbach, G., Kleiser, L.: Direct numerical simulations of turbulence. In: Prediction methods for turbulent flows. VKI-lecture series 1979, vol. 2. Von Kármán Institute for Fluid Dynamics, Brussels (1979)Google Scholar
  8. 8.
    Shishkina, O., Wagner, C.: Boundary and interior layers in turbulent thermal convection in cylindrical containers. Int. J. Sci. Comp. Math. 1(2/3/4), 360–373 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Shishkina, O., Wagner, C.: Analysis of sheet-like thermal plumes in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 599, 383–404 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Verzicco, R., Sreenivasan, K.R.: A comparison of turbulent thermal convection between conditions of constant temperature and constant heat flux. J. Fluid Mech. 595, 203–219 (2008)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. Kaczorowski
    • 1
  • C. Wagner
    • 1
  1. 1.German Aerospace Centre (DLR)Institute of Aerodynamics and Flow TechnologyGöttingenGermany

Personalised recommendations