LES and DES Study of Fluid-Particle Dynamics in a Human Mouth-Throat Geometry

  • S. T. Jayaraju
  • S. Verbanck
  • C. Lacor
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


A CT based simplified upper human airway model was created by preserving all critical geometrical features. The fluid flow at a normal breathing flow rate of 30 l/min is numerically studied employing RANS, DES and LES methods. The complex flow patterns with skewed velocity profiles and flow separations are discussed for the LES model. The deposition efficiency and the deposition patterns for the particle diameters 2, 4, 6, 8 and 10 μm are presented. For particle diameters in the respirable range, LES and DES showed considerable improvement over the RANS model, however, for the particles above 5 μm, RANS performs as good as LES/DES. The frozen LES method for particle tracking consistently underestimated the deposition of bigger particles.


Reynolds Average Navier Stokes Reynolds Average Navier Stokes Stokes Number Aerosol Deposition Reynolds Stress Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armenio, V., Piomelli, U., Fiorotto, V.: Effect of the subgrid scales on particle motion. Physics of Fluids 11, 3030–3042 (1999)zbMATHCrossRefGoogle Scholar
  2. 2.
    Breuer, M., Baytekin, H.T., Matida, E.A.: Prediction of aerosol deposition in 90 degree bends using les and an efficient lagrangian tracking method. Journal of Aerosol Science 37, 1407–1428 (2006)CrossRefGoogle Scholar
  3. 3.
    Jin, H.H., Fan, J.R., Zeng, M.J., Cen, K.F.: Large eddy simulation of inhaled particle deposition within the human upper respiratory tract. Journal of Aerosol Science 38, 257–268 (2007)CrossRefGoogle Scholar
  4. 4.
    Matida, E.A., Finlay, W.H., Breuer, M., Lange, C.F.: Improving prediction of aerosol deposition in an idealized mouth using large eddy simulation. Journal of Aerosol Medicine 19, 290–300 (2006)CrossRefGoogle Scholar
  5. 5.
    Matida, E.A., Finlay, W.H., Lange, C.F., Grgic, B.: Improved numerical simulation of aerosol deposition in an idealized mouth-throat. Journal of Aerosol Science 35, 1–19 (2004)CrossRefGoogle Scholar
  6. 6.
    Salvetti, M.V., Marchioli, C., Soldati, A.: Lagrangian tracking of particles in large-eddy simulation with fractal interpolation. In: Conf. Proc. TI 2006, Porquerolles (2006)Google Scholar
  7. 7.
    Shotorban, B., Mashaye, F.: Modeling subgrid-scale effects on particles by approximate deconvolution. Physics of Fluids 17, 081701 (2005)CrossRefGoogle Scholar
  8. 8.
    Stahlhofen, W., Rudolf, G., James, A.C.: Intercomparison of experimental regional aerosol deposition data. Journal of Aerosol Medicine 2, 285–308 (1989)CrossRefGoogle Scholar
  9. 9.
    Stapleton, K.W., Guentsch, E., Hoskinson, M.K., Finlay, W.H.: On the suitability of k − ε turbulence modeling for aerosol deposition in the mouth and throat: A comparison with experiment. Journal of Aerosol Science 31, 739–749 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • S. T. Jayaraju
    • 1
  • S. Verbanck
    • 2
  • C. Lacor
    • 1
  1. 1.Dept. Mechanical EngineeringVrije Universiteit BrusselBrusselBelgium
  2. 2.Respiratory DivisionAcademic hospital BrusselBrusselBelgium

Personalised recommendations