Thermodynamic Fluctuations Behaviour during a Sheared Turbulence/Shock Interaction

  • S. Jamme
  • M. Crespo
  • P. Chassaing
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


Direct Numerical Simulation is used to study the mechanisms underlying the production of turbulent density fluctuations in a sheared turbulent flow with uniform mean velocity gradient and non-uniform mean density and temperature gradients. The coupling between the production mechanism of the Reynolds stresses and the one of the fluctuating density is investigated through the budgets of several relevant turbulent quantities. An interaction of this kind of turbulent flow with a shock wave is then considered in order to elucidate the effect of the shock on the previous mechanisms. The influence of the sign of the upstream correlation \(\overline{u'_1T'}\) is finally reported.


Shock Wave Mach Number Direct Numerical Simulation Reynolds Stress Production Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fabre, D., Jacquin, L., Sesterhenn, J.: Linear interaction of a cylindrical entropy spot with a shock. Phys. Fluids 13, 2403–2422 (2001)CrossRefGoogle Scholar
  2. 2.
    Jamme, S., Cazalbou, J.-B., Torrès, F., Chassaing, P.: Direct numerical simulation of the interaction of a shock wave and various types of isotropic turbulence. Flow, Turbulence and Combustion 68, 227–268 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Kovasznay, L.S.J.: Turbulence in supersonic flows. J. of the Aero. Sci. 20, 657–682 (1953)Google Scholar
  4. 4.
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comp. Phys. 103, 16–42 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Mahesh, K., Lele, S.K., Moin, P.: The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334, 353–379 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous reacting flows. J. Comp. Phys. 101, 104–129 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ponziani, D., Pirozzoli, S., Grasso, F.: Development of optimized Weighted-ENO schemes for multiscale compressible flows. Int. J. Numer. Meth. in Fluids 42, 953–977 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Shu, C.W., Osher, S.: Efficient implementation of Essentially Non-Oscillatory shock-capturing schemes. J. Comp. Phys. 77, 439–471 (1988)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • S. Jamme
    • 1
  • M. Crespo
    • 1
  • P. Chassaing
    • 1
  1. 1.Université de Toulouse, ISAEToulouseFrance

Personalised recommendations