Advertisement

Pulsating Flow through Porous Media

  • Michele Iervolino
  • Marcello Manna
  • Andrea Vacca
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

The present work investigates the response of a porous media to an unsteady forcing resulting from the superposition of an harmonic component to a mean one. The analysis is carried out both in terms of global parameters and local fields obtained processing data from numerical solution of the Navier-Stokes equations at pore level performed with a spectrally accurate multi-domain algorithm.

Keywords

Porous Medium Solid Volume Fraction Frequency Regime Seepage Velocity Pore Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amaral Souto, H.P., Moyne, C.: Dispersion in two-dimensional periodic porous media. Part I. Hydrodynamics. Phys. Fluids A 9(8), 2243–2252 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Burcharth, H.F., Andersen, O.H.: On the one-dimensional steady and unsteady porous flow equations. Coastal Engineering 24, 233–257 (1995)CrossRefGoogle Scholar
  3. 3.
    Champman, A.M., Higdon, J.J.L.: Oscillatory Stokes flow in periodic porous. Phys. Fluids A 4, 2099–2116 (1992)CrossRefGoogle Scholar
  4. 4.
    Firdaouss, M., Guermond, J.-L., Le Quéré, P.: Nonlinear corrections to Darcy’s law at low Reynolds numbers. J. Fluid Mech. 343, 331–350 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Graham, D.R., Higdon, J.J.L.: Oscillatory forcing of flow through porous media. Part 2. Unsteady flow. J. Fluid Mech. 465, 237–260 (2002)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Hannoura, A.A., McCorquodale, J.A.: Virtual mass of coarse granular media. J. Waterw. Port Coastal Ocean Div. ASCE 104(WW2), 191–200 (1978)Google Scholar
  7. 7.
    Manna, M., Vacca, A., Deville, M.O.: Preconditioned spectral multi-domain discretization of the incompressible Navier–Stokes equations. J. Comput. Phys. 201, 204–223 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Madsen, O.S.: Wave transmission through porous structures. J. Waterw. Harbours Coastal Eng. Div. ASCE 100(WW3), 169–188 (1974)Google Scholar
  9. 9.
    Nishimura, T.: Oscillatory flows and mass transfer within asymmetric and symmetric channels with sinusoidal wavy walls. Heat Mass Transfer 30, 269–278 (1995)Google Scholar
  10. 10.
    Ralph, M.E.: Oscillatory flows in wavy-walled tubes. J. Fluid Mech. 168, 515–540 (1986)CrossRefGoogle Scholar
  11. 11.
    Roberts, E.P.L., Mackley, M.R.: The development of asymmetry and period doubling for oscillatory flow in baffled channels. J. Fluid Mech. 328, 19–48 (1996)zbMATHCrossRefGoogle Scholar
  12. 12.
    Rojas, S., Koplik, J.: Nonlinear flow in porous media. Phys. Rev. E 58(4), 4776–4782 (1998)CrossRefGoogle Scholar
  13. 13.
    Sobey, I.J.: On flow through furrowed channels. Part 1. Calculated flow patterns. J. Fluid Mech. 96, 1–26 (1980)zbMATHCrossRefGoogle Scholar
  14. 14.
    Stephanoff, I.J., Sobey, I.J., Bellhouse, B.J.: On flow through furrowed channels. Part 2. Observed flow patterns. J. Fluid Mech. 96, 27–32 (1980)zbMATHCrossRefGoogle Scholar
  15. 15.
    Van Kan, J.: A second order accurate pressure correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7, 870–891 (1986)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michele Iervolino
    • 1
  • Marcello Manna
    • 2
  • Andrea Vacca
    • 1
  1. 1.Dipartimento di Ingegneria CivileSeconda Universitá di NapoliAversa (Ce)Italy
  2. 2.Dipartimento di Ingegneria Meccanica per l’EnergeticaUniversitá di Napoli ”Federico II”NapoliItaly

Personalised recommendations