Skip to main content

Inner-Outer Interactions in Wall-Bounded Turbulence

  • Conference paper
Book cover Turbulence and Interactions

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 110))

  • 1898 Accesses

Abstract

This paper deals with some of the features that distinguish wall-bounded sheared turbulence from that in free-shear flows. It concerns itself mostly with the largest structures at each wall distance, because they are where energy is fed into the fluctuations, and therefore the ones that differ most between the different flows. Because of the geometric limitations imposed by the wall, the largest scales roughly coincide with the smallest ones in the viscous buffer layer, but the rest of the flow is characterised, as in most turbulent cases, by a wide range of scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R.J., Meinhart, C.D., Tomkins, C.D.: Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bakewell, H.P., Lumley, J.L.: Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10, 1880–1889 (1967)

    Article  Google Scholar 

  3. Brown, G.L., Roshko, A.: On the density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816 (1974)

    Article  Google Scholar 

  4. Butler, K.M., Farrell, B.F.: Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 1637–1650 (1992)

    Article  Google Scholar 

  5. Christensen, K.T., Adrian, R.J.: Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433–443 (2001)

    Article  MATH  Google Scholar 

  6. Darcy, H.: Recherches expérimentales rélatives au mouvement de l’eau dans les tuyeaux. Mém. Savants Etrang. Acad. Sci. Paris 17, 1–268 (1854)

    Google Scholar 

  7. de Graaff, D.B., Eaton, J.K.: Reynolds number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319–346 (2000)

    Article  Google Scholar 

  8. del Álamo, J.C., Jiménez, J.: Spectra of very large anisotropic scales in turbulent channels. Phys. Fluids 15, L41–L44 (2003)

    Article  Google Scholar 

  9. del Álamo, J.C., Jiménez, J.: Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205–213 (2006)

    Article  MATH  Google Scholar 

  10. del Álamo, J.C., Jiménez, J.: Estimation of turbulent convection velocities and corrections to taylor’s approximation. J. Fluid Mech. (2009) (submitted)

    Google Scholar 

  11. del Álamo, J.C., Jiménez, J., Zandonade, P., Moser, R.D.: Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135–144 (2004)

    Article  MATH  Google Scholar 

  12. del Álamo, J.C., Jiménez, J., Zandonade, P., Moser, R.D.: Self-similar vortex clusters in the logarithmic region. J. Fluid Mech. 561, 329–358 (2006)

    Article  MATH  Google Scholar 

  13. Flores, O., Jiménez, J.: Effect of wall-boundary disturbances on turbulent channel flows. J. Fluid Mech. 566, 357–376 (2006)

    Article  MATH  Google Scholar 

  14. Flores, O., Jiménez, J.: The minimal logarithmic region. In: Proc. Div. Fluid Dyn., pp. AE–04. Am. Phys. Soc. (2007)

    Google Scholar 

  15. Gustavsson, L.H.: Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241–260 (1991)

    Article  MATH  Google Scholar 

  16. Hagen, G.H.L.: Über den Bewegung des Wassers in engen cylindrischen Röhren. Poggendorfs Ann. Physik Chemie 46, 423–442 (1839)

    Google Scholar 

  17. Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to Re τ = 2003. Phys. Fluids 18, 011702 (2006)

    Article  Google Scholar 

  18. Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 467–477 (2007)

    Article  MathSciNet  Google Scholar 

  19. Jiménez, J.: The largest scales of turbulence. In: CTR Ann. Res. Briefs, pp. 137–154. Stanford Univ., Stanford (1998)

    Google Scholar 

  20. Jiménez, J.: Turbulent flows over rough walls. Ann. Rev. Fluid Mech. 36, 173–196 (2004)

    Article  Google Scholar 

  21. Jiménez, J., del Álamo, J.C., Flores, O.: The large-scale dynamics of near-wall turbulence. J. Fluid Mech. 505, 179–199 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jiménez, J., Kawahara, G., Simens, M.P., Nagata, M., Shiba, M.: Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions. Phys. Fluids 17, 015105 (2005)

    Article  Google Scholar 

  23. Jiménez, J., Moin, P.: The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 221–240 (1991)

    Article  Google Scholar 

  24. Jiménez, J., Pinelli, A.: The autonomous cycle of near wall turbulence. J. Fluid Mech. 389, 335–359 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jiménez, J., Simens, M.P.: Low-dimensional dynamics in a turbulent wall flow. J. Fluid Mech. 435, 81–91 (2001)

    Article  MATH  Google Scholar 

  26. Kim, H.T., Kline, S.J., Reynolds, W.C.: The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50, 133–160 (1971)

    Article  Google Scholar 

  27. Kim, K.C., Adrian, R.J.: Very large-scale motion in the outer layer. Phys. Fluids 11, 417–422 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluids a very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 301–305 (1941); Reprinted in Proc. R. Soc. London. A 434, 9–13 (1991)

    Google Scholar 

  29. Meinhart, C.D., Adrian, R.J.: On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7, 694–696 (1995)

    Article  Google Scholar 

  30. Mizuno, Y., Jiménez, J.: Wall turbulence without walls. In: Proc. Div. Fluid Dyn., pp. AA–02. Am. Phys. Soc. (2008)

    Google Scholar 

  31. Nagata, M.: Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519–527 (1990)

    Article  MathSciNet  Google Scholar 

  32. Österlund, J.M., Johansson, A.V., Nagib, H.M., Hites, M.: A note on the overlap region in turbulent boundary layers. Phys. Fluids 12, 1–4 (2000)

    Article  MATH  Google Scholar 

  33. Reynolds, W.C., Hussain, A.K.M.F.: The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263–288 (1972)

    Article  Google Scholar 

  34. Reynolds, W.C., Tiederman, W.G.: Stability of turbulent channel flow, with application to Malkus’ theory. J. Fluid Mech. 27, 253–272 (1967)

    Article  Google Scholar 

  35. Richardson, L.F.: The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. A 97, 354–373 (1920)

    Article  Google Scholar 

  36. Robinson, S.K.: Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23, 601–639 (1991)

    Article  Google Scholar 

  37. Smith, C.R., Metzler, S.P.: The characteristics of low speed streaks in the near wall region of a turbulent boundary layer. J. Fluid Mech. 129, 27–54 (1983)

    Article  Google Scholar 

  38. Swearingen, J.D., Blackwelder, R.F.: The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255–290 (1987)

    Article  Google Scholar 

  39. Tennekes, H., Lumley, J.L.: A first course in turbulence. MIT Press, Cambridge (1972)

    Google Scholar 

  40. Townsend, A.A.: The structure of turbulent shear flow, 2nd edn. Cambridge U. Press, Cambridge (1976)

    MATH  Google Scholar 

  41. Waleffe, F.: Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 4140–4143 (1998)

    Article  Google Scholar 

  42. Waleffe, F.: Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 1517–1534 (2003)

    Article  MathSciNet  Google Scholar 

  43. Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiménez, J. (2010). Inner-Outer Interactions in Wall-Bounded Turbulence. In: Deville, M., Lê, TH., Sagaut, P. (eds) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14139-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14139-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14138-6

  • Online ISBN: 978-3-642-14139-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics