Inner-Outer Interactions in Wall-Bounded Turbulence

  • Javier Jiménez
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


This paper deals with some of the features that distinguish wall-bounded sheared turbulence from that in free-shear flows. It concerns itself mostly with the largest structures at each wall distance, because they are where energy is fed into the fluctuations, and therefore the ones that differ most between the different flows. Because of the geometric limitations imposed by the wall, the largest scales roughly coincide with the smallest ones in the viscous buffer layer, but the rest of the flow is characterised, as in most turbulent cases, by a wide range of scales.


Reynolds Number Buffer Layer Turbulent Boundary Layer Streamwise Velocity Wall Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adrian, R.J., Meinhart, C.D., Tomkins, C.D.: Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bakewell, H.P., Lumley, J.L.: Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10, 1880–1889 (1967)CrossRefGoogle Scholar
  3. 3.
    Brown, G.L., Roshko, A.: On the density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816 (1974)CrossRefGoogle Scholar
  4. 4.
    Butler, K.M., Farrell, B.F.: Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 1637–1650 (1992)CrossRefGoogle Scholar
  5. 5.
    Christensen, K.T., Adrian, R.J.: Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433–443 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Darcy, H.: Recherches expérimentales rélatives au mouvement de l’eau dans les tuyeaux. Mém. Savants Etrang. Acad. Sci. Paris 17, 1–268 (1854)Google Scholar
  7. 7.
    de Graaff, D.B., Eaton, J.K.: Reynolds number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319–346 (2000)CrossRefGoogle Scholar
  8. 8.
    del Álamo, J.C., Jiménez, J.: Spectra of very large anisotropic scales in turbulent channels. Phys. Fluids 15, L41–L44 (2003)CrossRefGoogle Scholar
  9. 9.
    del Álamo, J.C., Jiménez, J.: Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205–213 (2006)zbMATHCrossRefGoogle Scholar
  10. 10.
    del Álamo, J.C., Jiménez, J.: Estimation of turbulent convection velocities and corrections to taylor’s approximation. J. Fluid Mech. (2009) (submitted)Google Scholar
  11. 11.
    del Álamo, J.C., Jiménez, J., Zandonade, P., Moser, R.D.: Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135–144 (2004)zbMATHCrossRefGoogle Scholar
  12. 12.
    del Álamo, J.C., Jiménez, J., Zandonade, P., Moser, R.D.: Self-similar vortex clusters in the logarithmic region. J. Fluid Mech. 561, 329–358 (2006)zbMATHCrossRefGoogle Scholar
  13. 13.
    Flores, O., Jiménez, J.: Effect of wall-boundary disturbances on turbulent channel flows. J. Fluid Mech. 566, 357–376 (2006)zbMATHCrossRefGoogle Scholar
  14. 14.
    Flores, O., Jiménez, J.: The minimal logarithmic region. In: Proc. Div. Fluid Dyn., pp. AE–04. Am. Phys. Soc. (2007)Google Scholar
  15. 15.
    Gustavsson, L.H.: Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241–260 (1991)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hagen, G.H.L.: Über den Bewegung des Wassers in engen cylindrischen Röhren. Poggendorfs Ann. Physik Chemie 46, 423–442 (1839)Google Scholar
  17. 17.
    Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to Re τ= 2003. Phys. Fluids 18, 011702 (2006)CrossRefGoogle Scholar
  18. 18.
    Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 467–477 (2007)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Jiménez, J.: The largest scales of turbulence. In: CTR Ann. Res. Briefs, pp. 137–154. Stanford Univ., Stanford (1998)Google Scholar
  20. 20.
    Jiménez, J.: Turbulent flows over rough walls. Ann. Rev. Fluid Mech. 36, 173–196 (2004)CrossRefGoogle Scholar
  21. 21.
    Jiménez, J., del Álamo, J.C., Flores, O.: The large-scale dynamics of near-wall turbulence. J. Fluid Mech. 505, 179–199 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Jiménez, J., Kawahara, G., Simens, M.P., Nagata, M., Shiba, M.: Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions. Phys. Fluids 17, 015105 (2005)CrossRefGoogle Scholar
  23. 23.
    Jiménez, J., Moin, P.: The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 221–240 (1991)CrossRefGoogle Scholar
  24. 24.
    Jiménez, J., Pinelli, A.: The autonomous cycle of near wall turbulence. J. Fluid Mech. 389, 335–359 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Jiménez, J., Simens, M.P.: Low-dimensional dynamics in a turbulent wall flow. J. Fluid Mech. 435, 81–91 (2001)zbMATHCrossRefGoogle Scholar
  26. 26.
    Kim, H.T., Kline, S.J., Reynolds, W.C.: The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50, 133–160 (1971)CrossRefGoogle Scholar
  27. 27.
    Kim, K.C., Adrian, R.J.: Very large-scale motion in the outer layer. Phys. Fluids 11, 417–422 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluids a very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 301–305 (1941); Reprinted in Proc. R. Soc. London. A 434, 9–13 (1991)Google Scholar
  29. 29.
    Meinhart, C.D., Adrian, R.J.: On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7, 694–696 (1995)CrossRefGoogle Scholar
  30. 30.
    Mizuno, Y., Jiménez, J.: Wall turbulence without walls. In: Proc. Div. Fluid Dyn., pp. AA–02. Am. Phys. Soc. (2008)Google Scholar
  31. 31.
    Nagata, M.: Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519–527 (1990)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Österlund, J.M., Johansson, A.V., Nagib, H.M., Hites, M.: A note on the overlap region in turbulent boundary layers. Phys. Fluids 12, 1–4 (2000)zbMATHCrossRefGoogle Scholar
  33. 33.
    Reynolds, W.C., Hussain, A.K.M.F.: The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263–288 (1972)CrossRefGoogle Scholar
  34. 34.
    Reynolds, W.C., Tiederman, W.G.: Stability of turbulent channel flow, with application to Malkus’ theory. J. Fluid Mech. 27, 253–272 (1967)CrossRefGoogle Scholar
  35. 35.
    Richardson, L.F.: The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. A 97, 354–373 (1920)CrossRefGoogle Scholar
  36. 36.
    Robinson, S.K.: Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23, 601–639 (1991)CrossRefGoogle Scholar
  37. 37.
    Smith, C.R., Metzler, S.P.: The characteristics of low speed streaks in the near wall region of a turbulent boundary layer. J. Fluid Mech. 129, 27–54 (1983)CrossRefGoogle Scholar
  38. 38.
    Swearingen, J.D., Blackwelder, R.F.: The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255–290 (1987)CrossRefGoogle Scholar
  39. 39.
    Tennekes, H., Lumley, J.L.: A first course in turbulence. MIT Press, Cambridge (1972)Google Scholar
  40. 40.
    Townsend, A.A.: The structure of turbulent shear flow, 2nd edn. Cambridge U. Press, Cambridge (1976)zbMATHGoogle Scholar
  41. 41.
    Waleffe, F.: Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 4140–4143 (1998)CrossRefGoogle Scholar
  42. 42.
    Waleffe, F.: Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 1517–1534 (2003)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Javier Jiménez
    • 1
  1. 1.School of AeronauticsU. PolitécnicaMadridSpain

Personalised recommendations