Grid Filter Modeling for Large-Eddy Simulation

  • Marc A. Habisreutinger
  • Roland Bouffanais
  • Michel O. Deville
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


An interpretation to the use of deconvolution models when used in implicitly filtered large-eddy simulations as a way to approximate the projective grid filter is given. Consequently, a new category of subgrid models, the grid filter models, is defined. This approach gives a theoretical justification to the use of deconvolution models without explicit filtering of the solution and explains how the use of such models can be effective in this context.

This viewpoint also allows to consider a new way of designing the convolution filter which has to approximate the grid filter and therefore a new way of improving such subgrid models. In this framework, a general technique for the approximation of the grid filter associated with any function-based numerical method is proposed. The resulting subgrid model is parameterless, only depends on the mesh used for the large-eddy simulation which is a priori known and vanishes locally if the flow is not turbulent, thereby ensuring the consistency of the model with the Navier-Stokes equations.


Stokes Equation Subgrid Scale Spectral Element Method Subgrid Model Projective Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Domaradzki, J.A., Adams, N.A.: Direct modelling of subgrid scales of turbulence in large-eddy simulations. J. of Turbulence 3(24)Google Scholar
  2. 2.
    Zhou, Y., Hossain, M., Vahala, G.: A critical-look at the use of filters in large-eddy simulation. Phys. Lett. A 139, 330–332 (1989)CrossRefGoogle Scholar
  3. 3.
    Langford, J.A., Moser, R.D.: Optimal LES formulations for isotropic turbulence. J. Fluid Mech. 398, 321–346 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Domaradzki, J.A., Loh, K.C.: The subgrid-scale estimation model in the physical space representation. Phys. Fluids 11, 2330–2342 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Winckelmans, G.S., Wray, A.A., Vasilyev, O.V., Jeanmart, H.: Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term. Phys. Fluids 13, 1385–1403 (2001)CrossRefGoogle Scholar
  6. 6.
    Deville, M.O., Fischer, P.F., Mund, E.H.: High-order methods for incompressible fluid flow. Cambridge University Press, Cambridge (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Habisreutinger, M.A., Bouffanais, R., Leriche, E., Deville, M.O.: A coupled approximate deconvolution and dynamic mixed scale model for large-eddy simulation. J. Comput. Phys. 224, 241–266 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Stolz, S., Adams, N.A.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, 1699–1701 (1999)zbMATHCrossRefGoogle Scholar
  9. 9.
    Winckelmans, G.S., Jeanmart, H.: Assessment of some models for LES without/with explicit filtering, Geurts, Friedrich and Métais Edition. In: Direct and large-eddy simulation IV, pp. 55–66. Kluwer, Dordrecht (2001)Google Scholar
  10. 10.
    Gullbrand, J., Chow, F.K.: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech. 495, 323–341 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Habisreutinger, M.A.: Large-eddy simulation of turbulent flows by approximate deconvolution models using spectral element method. Master’s thesis, École Polytechnique Fédérale de Lausanne, Section de Génie Mécanique (2006)Google Scholar
  12. 12.
    Bouffanais, R.: Simulation of shear-driven flows: transition with a free surface and confined turbulence. Ph.D. thesis, no. 3837, École Polytechnique Fédérale de Lausanne (2007)Google Scholar
  13. 13.
    Boyd, J.P.: Two comments on filtering (artificial viscosity) for Chebyshev and Legendre spectral and spectral element methods: Preserving boundary conditions and interpretation of the filter as a diffusion. J. Comput. Phys. 143, 283–288 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Leriche, E., Gavrilakis, S.: Direct numerical simulation of the flow in the lid-driven cubical cavity. Phys. Fluids 12, 1363–1376 (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marc A. Habisreutinger
    • 1
  • Roland Bouffanais
    • 2
  • Michel O. Deville
    • 1
  1. 1.École Polytechnique Fédérale de Lausanne, STI–IGM–LINLausanne
  2. 2.Massachusetts Institute of TechnologyVortical Flow Research LaboratoryCambridge

Personalised recommendations