Advertisement

Toroidal/Poloidal Modes Dynamics in Anisotropic Turbulence

  • Fabien S. Godeferd
  • Alexandre Delache
  • Claude Cambon
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

Isotropic turbulence receives a continuous effort for an increasingly refined description, but complex effects modify the dynamics of turbulence, and are poorly understood. Instances of distorted turbulence by external body forces are present throughout natural and industrial flows, as in geophysical flows submitted to the Earth’s rotation, and to density or temperature stratification. We focus here on the effects of stable stratification and solid body rotation on the dynamics and structure of homogeneous turbulence.We perform high resolution Direct Numerical Simulations (DNS), to characterize the 3D structure of anisotropic turbulence and its statistical properties. Vertical structures appear in rotating turbulence, or a layering in stably stratified turbulence, depending on the rotation rate and the density gradient, parameters that are varied in our simulations (see [8]).

Keywords

Direct Numerical Simula Isotropic Turbulence Solid Body Rotation Directional Spectrum Inertial Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartello, P., Métais, O., Lesieur, M.: Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273, 1–29 (1994)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bellet, F., Godeferd, F.S., Scott, J., Cambon, C.: Wave turbulence modelling in rapidly rotating flows. J. Fluid Mech. 562, 83–121 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    van Bokhoven, L., Cambon, C., Liechtenstein, L., Godeferd, F., Clercx, H.: Refined vorticity statistics of decaying rotating three-dimensional turbulence. J. of Turbulence 9(6) (2008)Google Scholar
  4. 4.
    Cambon, C., Mansour, N.N., Godeferd, F.S.: Energy transfer in rotating turbulence. J. Fluid Mech. 337, 303–332 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Godeferd, F.S., Staquet, C.: Statistical modelling and direct numerical simulations of decaying stably-stratified turbulence: Part 2: Large scales and small scales anisotropy. J. Fluid Mech. 486, 115–150 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Itsweire, E.C., Helland, K.N., Van Atta, C.W.: The evolution of grid-generated tubulence in a stably stratified fluid. J. Fluid Mech. 162, 299–338 (1986)CrossRefGoogle Scholar
  7. 7.
    Jacquin, L., Leuchter, O., Cambon, C., Mathieu, J.: Homogeneous turbulence in the presence of rotation. J. Fluid Mech. 220, 1–52 (1990)zbMATHCrossRefGoogle Scholar
  8. 8.
    Liechtenstein, L., Godeferd, F., Cambon, C.: Nonlinear formation of structures in rotating stratified turbulence. J. of Turb. 6, 1–18 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    McEwan, A.: Angular momentum diffusion and the initiation of cyclones. Nature 260, 126–128 (1976)CrossRefGoogle Scholar
  10. 10.
    Rogallo, R.S.: Numerical experiments in homogeneous turbulence. Tech. Rep. 81315, NASA Technical Memorandum (1981)Google Scholar
  11. 11.
    Vincent, A., Meneguzzi, M.: The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 1–20 (1991)zbMATHCrossRefGoogle Scholar
  12. 12.
    Waleffe, F.: Inertial transfer in the helical decomposition. Phys. Fluid A(5), 677–685 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fabien S. Godeferd
    • 1
  • Alexandre Delache
    • 3
  • Claude Cambon
    • 2
  1. 1.LMFAUniversité de Lyon, École Centrale de LyonFrance
  2. 2.LMFA UMR 5509, Université de Lyon, École Centrale de LyonFrance
  3. 3.LAMUSEUniversit Jean MonnetSaint-ÉtienneFrance

Personalised recommendations