Advertisement

Effect of Particle-Particle Collisions on the Spatial Distribution of Inertial Particles Suspended in Homogeneous Isotropic Turbulent Flows

  • Pascal Fede
  • Olivier Simonin
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

Preferential concentration of solid inertial colliding particles suspended in homogeneous isotropic turbulence is numerically investigated using Direct Numerical Simulation (DNS) coupled with Discrete Particle Simulation (DPS). The results show that the preferential concentration is decreasing when the collision frequency increases. This effect is found enhanced for non-elastic particle-particle collisions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eswaran, V., Pope, S.B.: An examination of forcing in direct numerical simulations of turbulence. Computers & Fluids 16, 257–278 (1988)zbMATHCrossRefGoogle Scholar
  2. 2.
    Fessler, J.R., Kulick, J.D., Eaton, J.K.: Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6, 3742–3749 (1994)CrossRefGoogle Scholar
  3. 3.
    Février, P., Simonin, O., Legendre, D.: Particle dispersion and preferential concentration dependence on turbulent reynolds number from direct numerical simulation and large eddy simulation of isotropic homogeneous turbulence. In: Proc. 4th Int. Conference on Multiphase Flow, ICFM 2001 (2001)Google Scholar
  4. 4.
    Hopkins, M., Louge, M.: Inelastic microstructure in rapid granular flows of smooth disks. Phys. of Fluids 3, 47–57 (1991)CrossRefGoogle Scholar
  5. 5.
    Reade, W.C., Collins, L.R.: Effect of preferential concentration on turbulent collisions rates. Phys. of Fluids 12, 2530–2540 (2000)CrossRefGoogle Scholar
  6. 6.
    Schiller, L., Nauman, A.: A drag coefficient correlation. V.D.I. Zeitung 77, 318–320 (1935)Google Scholar
  7. 7.
    Squires, K.D., Eaton, J.K.: Preferential concentration of particles by turbulence. Physics of Fluids A: Fluid Dynamics 3(5), 1169–1178 (1991)CrossRefGoogle Scholar
  8. 8.
    Wang, L.P., Maxey, M.R.: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27–68 (1993)CrossRefGoogle Scholar
  9. 9.
    Wang, L.P., Wexler, A.S., Zhou, Y.: Statistical mechanical description and modelling of turbulent collision of inertial particles. J. Fluid Mech. 415, 117–153 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pascal Fede
    • 1
  • Olivier Simonin
    • 2
  1. 1.Université de Toulouse; INPT, UPS; IMFTToulouseFrance
  2. 2.CNRS; Institut de Mécanique des Fluides de ToulouseToulouseFrance

Personalised recommendations