Advertisement

Simulation of a Fluidized Bed Using a Hybrid Eulerian-Lagrangian Method for Particle Tracking

  • Cédric Corre
  • Jean-Luc Estivalezes
  • Stéphane Vincent
  • Olivier Simonin
  • Stéphane Glockner
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)

Abstract

The characterisation of fluidized beds still requires specific investigation for understanding and modelling the local coupling between the dispersed phase and the carrier fluid. The aim of this work is to simulate this type of unsteady particle laden flows via Direct Numerical Simulations in order to provide a local and instantaneous description of particle flow interactions and to extract statistical parameters useful for large scale models. A fluidized bed has been studied experimentally by Aguilar Corona ([1]). In this laboratory experiment, 3D tracking of a single bed particle provided Lagrangian properties of the discrete phase motion, while 2D PIV was used to characterize the flow of the continuum phase. This fluidized bed has been simulated during nine seconds in order to compare experimental and numerical results and to obtain some data that experimental studies can’t give.

Keywords

Direct Numerical Simulation Virtual Particle Cylindrical Tank Viscous Stress Tensor Soft Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguilar Corona, A.: Agitation de particules dans un lit fluidise liquide. Etude expérimentale. PhD Thesis, Université de Toulouse, INPT (2008)Google Scholar
  2. 2.
    Angot, P., Bruneau, C.-H.B., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik 81(4), 497–552 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Caltagirone, J.P., Vincent, S.: Tensorial penalisation method for solving Navier-Stokes equations. Compte rendu de l’académie des sciences, Série II 329, 607–613 (2001)Google Scholar
  4. 4.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  5. 5.
    Khadra, K., Angot, P., Parneix, S., Caltagirone, J.P.: Fictitious Domain Approach for Numerical Modelling of Navier-Stokes Equations. International Journal for Numerical Methods in Fluids 34(8), 651–684 (2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    Lun, C.K.K., Savage, S.B.: The effect of an impact velocity dependent coefficient of restitution on stresses developed by sheared granular materials. Acta Mechanica 63, 15–44 (1986)CrossRefzbMATHGoogle Scholar
  7. 7.
    Pan, T.W., Joseph, D.D., Bai, R., Glowinski, R., Sarin, V.: Fluidization of 1204 spheres: simulation and experiment. Journal of Fluid Mechanics 451, 169–191 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Randrianarivelo, T.N., Pianet, G., Vincent, S., Caltagirone, J.P.: Numerical modelling of solid particle motion using a new penalty method. International Journal for Numerical Methods in Fluids 47, 1245–1251 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Vincent, S., Caltagirone, J.P., Lubin, P., Randrianarivelo, T.N.: An adaptative augmented lagrangian method for three-dimensional multimaterial flows. Computers and Fluids 33(10), 1273–1289 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Vincent, S., Randrianarivelo, T.N., Pianet, G., Caltagirone, J.P.: Local penalty methods for flows interacting with moving solids at high Reynolds numbers. Computers and Fluids 36, 902–913 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Cédric Corre
    • 1
  • Jean-Luc Estivalezes
    • 1
  • Stéphane Vincent
    • 2
  • Olivier Simonin
    • 3
  • Stéphane Glockner
    • 2
  1. 1.ONERA/DMAEToulouseFrance
  2. 2.TREFLE-ENSCPB, UMR 8508 CNRSUniversité de BordeauxPessac CedexFrance
  3. 3.IMFT (Institut de Mécanique des Fluides de Toulouse), CNRS ; IMFT ; F-31400 Toulouse, FranceUniversité de Toulouse; INPT, UPSToulouseFrance

Personalised recommendations