Skip to main content

A Two-Phase LES Compressible Model for Plasma-Liquid Jet Interaction

  • Conference paper
Turbulence and Interactions

Abstract

The numerical simulation of the interaction between a plasma flow and a liquid jet is important for understanding and predicting the physical parameters involved in plasma spraying processes. This work proposes an original model for dealing with three-dimensional and unsteady turbulent interactions between a plasma flow and a liquid water jet. A compressible model, based on augmented Lagrangian, Large Eddy Simulation (LES) turbulence modeling and Volume of Fluid (VOF) approaches, capable of managing incompressible two-phase flows as well as turbulent compressible motions is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basu, S., Jordan, E.H., Cetegen, B.K.: Fluid mechanics and heat transfer of liquid precursor droplets injected into high-temperature plasmas. J. Therm. Spray Tech. 17, 60–72 (2008)

    Article  Google Scholar 

  2. Caiden, R., Fedkiw, R.P., Anderson, C.: A numerical method for two phase flow consisting of separate compressible and incompressible regions. J. Comput. Phys. 166, 1–27 (2001)

    Article  MATH  Google Scholar 

  3. Caltagirone, J.P., Vincent, S., Caruyer, C.: A multiphase compressible model for the simulation of multiphase flows. Physics of Fluids (under submission)

    Google Scholar 

  4. David, E.: Modélisation des écoulements compressibles et hypersoniques. PhD thesis, Institut National Polytechnique de Grenoble (1993)

    Google Scholar 

  5. Fincke, J.R., Crawford, D.M., Snyder, S.C., Swank, W.D., Haggard, D.C., Williamson, R.L.: Entrainment in high-velocity, high-temperature plasma jets. Part I: experimental results. Int. J. Heat Transfer 46, 4201–4213 (2003)

    Article  Google Scholar 

  6. Gustafsson, I.: On first and second order symmetric factorization methods for the solution of elliptic difference equations. Chalmers, University of Technology 1 (1978)

    Google Scholar 

  7. Kataoka, I.: Local instant formulation of two-phase flow. Int. J. Multiph. Flow 12, 745–758 (1986)

    Article  MATH  Google Scholar 

  8. Liu, Z., Reitz, R.D.: An analysis of the distorsion and breakup mechanisms of high speed liquid drops. Int. J. Multiphase Flow 23, 631–650 (1997)

    Article  MATH  Google Scholar 

  9. Marchand, C., Vardelle, A., Mariaux, G., Lefort, P.: Modelling of the plasma spray process with liquid feedstock injection. Surf. Coat. Technol. 202, 4458–4464 (2008)

    Article  Google Scholar 

  10. Marchand, C., Vardelle, A., Mariaux, G., Lefort, P.: Modelling of the plasma spray process with liquid feedstock injection. Surf. Coat. Technol. 202, 4458–4464 (2008)

    Article  Google Scholar 

  11. Mariaux, G., Vardelle, A.: 3-D time-dependent modelling of the plasma spray process. part I: flow modelling. Int. J. Therm. Sci. 44, 357–366 (2005)

    Article  Google Scholar 

  12. Meillot, E., Guenadou, D.: Thermal plasma flow modeling: A simple model for gas heating and acceleration. Plasma Chem. Plasma Process. 24, 217–238 (2004)

    Article  Google Scholar 

  13. Meillot, E., Guenadou, D., Bourgeois, C.: Three-dimension and transient D.C. plasma flow modeling. Plasma Chem. Plasma Process. 28, 69–84 (2007)

    Article  Google Scholar 

  14. Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G.: Adaptive characteristics-based matching for compressible multifluid dynamics. J. Comput. Phys. 213, 500–529 (2006)

    Article  MATH  Google Scholar 

  15. Nourgaliev, R.R., Theofanous, T.G.: High-fidelity interface tracking in compressible flows: Unlimited anchored adaptive level set. J. Comput. Phys. 224, 836–866 (2007)

    Article  MATH  Google Scholar 

  16. Sagaut, P.: Large eddy simulation for incompressible flows - An introduction. Springer, Heidelberg (1998)

    Google Scholar 

  17. Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow. Ann. Rev. Fluid Mech. 31, 567–603 (1999)

    Article  MathSciNet  Google Scholar 

  18. Smagorinsky, J.: General circulation experiments with the primitive equations. I: The basic experiments. Month. Weath. Rev. 91(3), 99–165 (1963)

    Article  Google Scholar 

  19. Trelles, J.P., Pfender, E., Heberlein, J.: Multiscale finite element modeling of arc dynamics in a d.c. plasma torch. Plasma Chem. Plasma Process. 26, 557–575 (2006)

    Article  Google Scholar 

  20. Vincent, S., Balmigere, G., Caruyer, C., Meillot, E., Caltagirone, J.: Contribution to the modeling of the interaction between a plasma flow and a liquid jet. Surf. Coat. Technol. (2008), doi:10.1016/j.surfcoat.2008.11.009

    Google Scholar 

  21. Vincent, S., Caltagirone, J.P.: Efficient solving method for unsteady incompressible flow problems. Int. J. Num. Meth. Fluids 30, 795–811 (1999)

    Article  MATH  Google Scholar 

  22. Vincent, S., Caltagirone, J.P., Lubin, P., Randrianarivelo, T.N.: An adaptative augmented lagrangian method for three-dimensional multimaterial flows. Comput. Fluids 33, 1273–1289 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Vincent, S., Larocque, J., Lacanette, D., Toutan, A., Lubin, P., Sagaut, P.: Numerical simulation of phase separation and a priori two-phase les filtering. Comput. Fluids 37, 898–906 (2008)

    Article  MATH  Google Scholar 

  24. Van Der Vorst, H.A.: A fast and smoothly converging variant of bi-cg for the solution of non-symmetric linear systems. J. Sci. Stat. Comput. 44, 631–644 (1992)

    Article  Google Scholar 

  25. Williamson, R.L., Fincke, J.R., Crawford, D.M., Snyder, S.C., Swank, W.D., Haggard, D.C.: Entrainment in high-velocity, high-temperature plasma jets. Part II: computational results and comparison to experiment. Int. J. Heat Transfer 46, 4215–4228 (2003)

    Article  Google Scholar 

  26. Yabe, T., Yuan, P.Y.: Unified numerical procedure for compressible and incompressible flow. J. of The Physical Society of Japan 60, 2105–2108 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caruyer, C., Vincent, S., Meillot, E., Caltagirone, JP. (2010). A Two-Phase LES Compressible Model for Plasma-Liquid Jet Interaction. In: Deville, M., Lê, TH., Sagaut, P. (eds) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14139-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14139-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14138-6

  • Online ISBN: 978-3-642-14139-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics