Wavelet Analysis of the Turbulent LES Data of the Lid-Driven Cavity Flow

  • Roland Bouffanais
  • Guy Courbebaisse
  • Laurent Navarro
  • Michel O. Deville
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 110)


Both Fourier and wavelet transforms are performed on data obtained from large-eddy simulations of the turbulent flow in a lid-driven cubical cavity. The analyzed data or synthetic signals are picked at three specific points inside the cavity allowing to investigate three regimes over time: laminar, transitional and turbulent. The main objective of this study is to generate and analyze synthetic signals in order to confirm the correlation between the computed physical quantities and those expected theoretically.


Direct Numerical Simulation Wavelet Analysis Continuous Wavelet Turbulent Regime Spectral Element Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arneodo, A., Argoul, F., Bacry, E., Elezgaray, J., Muzy, J.F.: Fractales, Ondelettes et Turbulence: de l’ADN aux croissances cristallines. Diderot Edn. (1995)Google Scholar
  2. 2.
    Bouffanais, R., Deville, M.O., Leriche, E.: Large-eddy simulation of the flow in a lid-driven cubical cavity. Phys. Fluids 19, Art. 055108 (2007)Google Scholar
  3. 3.
    Carmona, R., Hwang, W.L., Torrésani, B.: Practical time-frequency analysis. Academic Press, London (1997)Google Scholar
  4. 4.
    Jaffard, S.: Multifractal formalism for functions. Part 1 & 2. SIAM J. of Math. Anal. 28(4), 944–998 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. USSR 30, 301, 299–303 (1941)Google Scholar
  6. 6.
    Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Mallat, S.: A wavelet tour of signal processing, 2nd edn. Academic Press, London (1999)zbMATHGoogle Scholar
  8. 8.
    Oboukhov, O.M.: Some specific features of atmospheric turbulence J. Fluid Mech. 13, 77 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Frisch, U.: Turbulence: The legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  10. 10.
    Leriche, E.: Direct numerical simulation in a lid-driven cavity at high Reynolds number by a Chebyshev spectral method. J. Sci. Comput. 27(1-3), 335–345 (2006)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Roland Bouffanais
    • 1
  • Guy Courbebaisse
    • 2
  • Laurent Navarro
    • 3
  • Michel O. Deville
    • 4
  1. 1.MITCambridge
  2. 2.CREATIS-LRMNINSA-Bâtiment Blaise PascalVilleurbanne cedexFrance
  3. 3.CISÉcole Nationale Supérieure des Mines deSaint-ÉtienneSaint-ÉtienneFrance
  4. 4.École Polytechnique Fédérale de Lausanne, STI-IGM-LINLausanneSwitzerland

Personalised recommendations