Skip to main content

I-Terms in Ordered Resolution and Superposition Calculi: Retrieving Lost Completeness

  • Conference paper
Intelligent Computer Mathematics (CICM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6167))

Included in the following conference series:

Abstract

Ordered resolution and superposition are the state-of-the-art proof procedures used in saturation-based theorem proving, for non equational and equational clause sets respectively. In this paper, we present extensions of these calculi that permit one to reason about formulae built from terms with integer exponents (or I-terms), a schematisation language allowing one to denote infinite sequences of iterated terms [8]. We prove that the ordered resolution calculus is still refutationally complete when applied on (non equational) clauses containing I-terms. In the equational case, we prove that the superposition calculus is not complete in the presence of I-terms and we devise a new inference rule, called H-superposition, that restores completeness.

This work has been partly funded by the project ASAP of the French Agence Nationale de la Recherche (ANR-09-BLAN-0407-01).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 3(4), 217–247 (1994)

    Article  MathSciNet  Google Scholar 

  2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson and Voronkov [19], pp. 19–99

    Google Scholar 

  3. Baumgartner, P.: Hyper Tableaux — The Next Generation. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 60–76. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Bensaid, H., Caferra, R., Peltier, N.: Towards systematic analysis of theorem provers search spaces: First steps. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 38–52. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Bensaid, H., Caferra, R., Peltier, N.: Dei: A theorem prover for terms with integer exponents. In: Schmidt, R.A. (ed.) Automated Deduction – CADE-22. LNCS, vol. 5663, pp. 146–150. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building. Applied Logic Series, vol. 31. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  7. Chen, H., Hsiang, J., Kong, H.-C.: On finite representations of infinite sequences of terms. In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 100–114. Springer, Heidelberg (1991)

    Google Scholar 

  8. Comon, H.: On unification of terms with integer exponents. Mathematical Systems Theory 28(1), 67–88 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Farmer, W.M.: A unification algorithm for second-order monadic terms. Annals of Pure and Applied Logic 39(2), 131–174 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hermann, M., Galbavý, R.: Unification of infinite sets of terms schematized by primal grammars. Theor. Comput. Sci. 176(1-2), 111–158 (1997)

    Article  MATH  Google Scholar 

  11. Hermant, O.: Resolution is cut-free. Journal of Automated Reasoning 44(3), 245–276 (2010)

    Article  MATH  Google Scholar 

  12. Kirchner, H.: Schematization of infinite sets of rewrite rules generated by divergent completion processes. Theoretical Comput. Sci. 67(2-3), 303–332 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Leitsch, A.: The resolution calculus. In: Texts in Theoretical Computer Science. Springer, Heidelberg (1997)

    Google Scholar 

  14. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson and Voronkov [19], pp. 371–443

    Google Scholar 

  15. Peltier, N.: Increasing the capabilities of model building by constraint solving with terms with integer exponents. Journal of Symbolic Computation 24, 59–101 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Peltier, N.: A General Method for Using Terms Schematizations in Automated Deduction. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 578–593. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Robinson, J.A.: Automatic deduction with hyperresolution. Intern. Journal of Computer Math. 1, 227–234 (1965)

    MATH  Google Scholar 

  18. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. Assoc. Comput. Mach. 12, 23–41 (1965)

    MATH  MathSciNet  Google Scholar 

  19. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning, vol. 2. Elsevier/MIT Press (2001)

    Google Scholar 

  20. Salzer, G.: The unification of infinite sets of terms and its applications. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 409–420. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  21. Schulz, S.: System Description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bensaid, H., Caferra, R., Peltier, N. (2010). I-Terms in Ordered Resolution and Superposition Calculi: Retrieving Lost Completeness. In: Autexier, S., et al. Intelligent Computer Mathematics. CICM 2010. Lecture Notes in Computer Science(), vol 6167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14128-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14128-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14127-0

  • Online ISBN: 978-3-642-14128-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics