Skip to main content

Plant MicroRNAs and Their Response to Infection of Plant Viruses

  • Chapter
Experimental Plant Virology

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC,volume 0))

  • 925 Accesses

Abstract

In systemic infection, plant viruses bring disease symptoms that range from mild discoloration to severe developmental defects and death (Bazzini et al., 2007; Kasschau et al., 2003). In recent years, it has been demonstrated that small interfering RNAs (siRNAs) and microRNAs (miRNAs) play important roles in the process of host-pathogen interaction (Finnegan and Matzke, 2003; Voinnet, 2001). There is accumulating evidence that miRNAs function as an antiviral defense mechanism, therefore investigating the alteration of miRNAs expression profiles after virus infection provided a new insight into understanding the sophisticated virus-host plant interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achard P, Herr A, Baulcombe DC, et al.(2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131(14): 3357–3365.

    Article  PubMed  CAS  Google Scholar 

  • Anwar A, August JT and Too HP (2006) A stem-loop-mediated reverse transcription real-time PCR for the selective detection and quantification of the replicative strand of an RNA virus. Anal Biochem 352(1): 120–128.

    Article  PubMed  CAS  Google Scholar 

  • Aukerman MJ and Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15(11): 2730–2741.

    Article  PubMed  CAS  Google Scholar 

  • Bazzini AA, Hopp HE, Beachy RN, et al.(2007) Infection and co-accumulation of Tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Natl Acad Sci USA 104(29): 12157–12162.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, et al.(2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101(31): 11511–11516.

    Article  PubMed  CAS  Google Scholar 

  • Carrington JC and Ambros V (2003) Role of microRNAs in plant and animal development. Science 301(5631): 336–338.

    Article  PubMed  CAS  Google Scholar 

  • Chapman EJ and Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8(11): 884–896.

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, et al.(2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20): e179.

    Article  PubMed  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303: 2022–2025.

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579(26): 5923–5931.

    Article  PubMed  CAS  Google Scholar 

  • Chuck G., Candela H and Hake S (2009) Big impacts by small RNAs in plant development. Curr Opin Plant Biol 12(1): 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Wang K, Liu X, et al.(2009) The quantification of tomato microRNAs response to viral infection by stem-loop real-time RT-PCR. Gene 437(1–2): 14–21.

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Zeng R and Chen J (2008) Accurate and efficient data processing for quantitative real-time PCR using a tripartite plant virus as a model. Biotechniques 44(7): 901–912.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan EJ and Matzke MA (2003) The small RNA world. J Cell Sci 116(Pt 23): 4689–4693.

    Article  PubMed  CAS  Google Scholar 

  • Floyd SK and Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428(6982): 485–486.

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Gulari E and Zhou X (2004) In situ synthesis of oligonucleotide microarrays. Biopolymers 73(5): 579–596.

    Article  PubMed  CAS  Google Scholar 

  • Guo HS, Xie Q, Fei JF, et al.(2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down-regulate auxin signals for arabidopsis lateral root development. Plant Cell 17(5): 1376–1386.

    Article  PubMed  CAS  Google Scholar 

  • Itaya A, Bundschuh R, Archual AJ, et al.(2008) Small RNAs in tomato fruit and leaf development. Biochim Biophys Acta 1779(2): 99–107.

    PubMed  CAS  Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16 Suppl: S1–17.

    Article  Google Scholar 

  • Jones-Rhoades MW and Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell 14(6): 787–799.

    Article  PubMed  CAS  Google Scholar 

  • Jorda L, Conejero V and Vera P (2000) Characterization of P69E and P69F, two differentially regulated genes encoding new members of the subtilisin-like proteinase family from tomato plants. Plant Physiol 122(1): 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Jorda L and Vera P (2000) Local and systemic induction of two defense-related subtilisin-like protease promoters in transgenic Arabidopsis plants. Luciferin induction of PR gene expression. Plant Physiol 124(3): 1049–1058.

    Article  PubMed  CAS  Google Scholar 

  • Kasschau KD, Xie Z, Allen E, et al.(2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4(2): 205–217.

    Article  PubMed  CAS  Google Scholar 

  • Kavroulakis N, Papadopoulou KK, Ntougias S, et al.(2006) Cytological and other aspects of pathogenesis-related gene expression in tomato plants grown on a suppressive compost. Ann Bot (Lond) 98(3): 555–564.

    Article  CAS  Google Scholar 

  • Kurihara Y and Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101(34): 12753–12758.

    Article  PubMed  CAS  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, et al.(2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131(17): 4311–4322.

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL and Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5): 843–854.

    Article  PubMed  CAS  Google Scholar 

  • Lewsey M, Robertson FC, Canto T, et al.(2007) Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant J 50(2): 240–252.

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Kulkarni K, Souret FF, et al.(2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16(10): 1276–1288.

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Bartel DP and Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR 17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17(5): 1360–1375.

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP, et al.(2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Carrent Biology 14(12): 1035–1046.

    Article  CAS  Google Scholar 

  • Millar AA and Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17(3): 705–721.

    Article  PubMed  CAS  Google Scholar 

  • Ori N, Cohen AR, Etzioni A, et al.(2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39(6): 787–791.

    Article  PubMed  CAS  Google Scholar 

  • Palatnik JF, Allen E, Wu X, et al.(2003) Control of leaf morphogenesis by microRNAs. Nature 425(6955): 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Palukaitis P and Garcia-Arenal F (2003) Cucumoviruses. Adv Virus Res 62: 241–323.

    Article  PubMed  CAS  Google Scholar 

  • Park MY, Wu G, Gonzalez-Sulser A, et al.(2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102(10): 3691–3696.

    Article  PubMed  CAS  Google Scholar 

  • Pilcher RL, Moxon S, Pakseresht N, et al.(2007) Identification of novel small RNAs in tomato (Solanum lycopersicum). Planta 226(3): 709–717.

    Article  PubMed  Google Scholar 

  • Raymond CK, Roberts BS, Garrett-Engele P, et al.(2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11(11): 1737–1744.

    Article  PubMed  CAS  Google Scholar 

  • Reinhart B, Weinstein EG, Rhoades MW, et al.(2002) MicroRNAs in plants. Genes Dev 16(13): 1616–1626.

    Article  PubMed  CAS  Google Scholar 

  • Ru P, Xu L, Ma H and Huang H (2006) Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res 16(5): 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Lee EJ, Jiang J, et al.(2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44(1): 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, et al.(2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8(4): 517–527.

    Article  PubMed  CAS  Google Scholar 

  • Stratford S, Stec S, Jadhav V, et al.(2008) Examination of real-time polymerase chain reaction methods for the detection and quantification of modified siRNA. Anal Biochem 379(1): 96–104.

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Girke T, Jain PK, et al.(2005) Cloning and characterization of microRNAs from rice. Plant Cell 17(5): 1397–1411.

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R and Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8): 2001–2019.

    Article  PubMed  CAS  Google Scholar 

  • Tang F, Hajkova P, Barton SC, et al.(2006) MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34(2): e9.

    Article  PubMed  Google Scholar 

  • Tsuji H, Aya K, Ueguchi-Tanaka M, et al.(2006) GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. The Plant Journal 47(3): 427–444.

    Article  PubMed  CAS  Google Scholar 

  • Vance V and Vaucheret H (2001) RNA silencing in plants—defense and counterdefense. Science 292(5525): 2277–2280.

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Vazquez F, Crete P, et al.(2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18(10): 1187–1197.

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends in Genetics 17(8): 449–459.

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6(3): 206–220.

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Reyes JL, Chua NH, et al.(2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5(9): R65.

    Article  PubMed  Google Scholar 

  • Wu G and Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133(18): 3539–3547.

    Article  PubMed  CAS  Google Scholar 

  • Wu MF, Tian Q and Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133(21): 4211–4218.

    Article  PubMed  CAS  Google Scholar 

  • Xie FL, Huang SQ, Guo K, et al.(2007).Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581(7): 1464–1474.

    Article  PubMed  CAS  Google Scholar 

  • Xie K, Wu C and Xiong L (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol 142(1): 280–293.

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Allen E, Fahlgren N, et al.(2005) Expression of Arabidopsis MIRNA genes. Plant Physiol 138(4): 2145–2154.

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Kasschau KD and Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13(9): 784–789.

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Han SJ, Yoon EK, et al.(2006) Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res 34(6): 1892–1899.

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Cobb GP, et al.(2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289(1): 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zeng R, Chen J, et al.(2008) Identification of conserved microRNAs and their targets from Solanum lycopersicum Mill. Gene 423(1): 1–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, J. (2010). Plant MicroRNAs and Their Response to Infection of Plant Viruses. In: Experimental Plant Virology. Advanced Topics in Science and Technology in China, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14119-5_5

Download citation

Publish with us

Policies and ethics