Advertisement

A Haptic Gearshift Interface for Cars

  • Eloísa García-Canseco
  • Alain Ayemlong-Fokem
  • Alex Serrarens
  • Maarten Steinbuch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6192)

Abstract

This paper presents a two degrees–of–freedom haptic interface that uses force control to reproduce the behavior of a customary lever and gearshift in automotive applications. The haptic simulation of the gear selector lever has been done by the appropriated design of virtual artificial potential functions. These functions contain parameters that have intuitive physical meaning and that can be easily adjusted to change the force sensations fed to the user. To validate our approach, experiments have been carried out.

Keywords

haptic device gearshift automobile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hayward, V., Astley, O.R., Cruz-Hernández, M., Grant, D., de-la Torre, G.R.: Haptic interfaces and devices. Sensor Review 24(1), 16–29 (2004)CrossRefGoogle Scholar
  2. 2.
    Bigelow, S.J.: Haptics make it happen. Smart Computing (2004)Google Scholar
  3. 3.
    Hjelm, J.: Haptics in cars. In: Seminar Haptic Communication and Interaction in Mobile Contexts (2008)Google Scholar
  4. 4.
    van Erp, J.B.F., van Veen, H.A.H.C.: Vibro-tactile information presentation in automobiles. In: Proc. Eurohaptics 2001, Birmingham, UK, pp. 99–104 (2001)Google Scholar
  5. 5.
    Enriquez, M., Afonin, O., Yager, B., Maclean, K.: A pneumatic tactile alerting system for the driving environment. In: Proc. of the 2001 Workshop on Perceptive User Interfaces, pp. 1–7 (2001)Google Scholar
  6. 6.
    Ho, C., Tan, H.Z., Spence, C.: Using spatial vibrotactile cues to direct visual attention in driving scenes. Transportation Research Part F: Traffic Psychology and Behaviour 8(6), 397–412 (2005)CrossRefGoogle Scholar
  7. 7.
    Toffin, D., Reymond, G., Kemeny, A., Droulez, J.: Influence of steering wheel torque feedback in a dynamic driving simulator. In: Driving Simulation Conference North America, Dearborn, MI, USA (2003)Google Scholar
  8. 8.
    Mohellebi, H., Kheddar, A., Espie, S.: Adaptive haptic feedback steering wheel for driving simulators. IEEE Transactions on Vehicular Technology 58(4), 1654–1666 (2009)CrossRefGoogle Scholar
  9. 9.
    Steele, M., Gillespie, R.B.: Shared control between human and machine: Using a haptic steering wheel to aid in land vehicle guidance. Human Factors and Ergonomics Society Annual Meeting Proceedings 45, 1671–1675 (2001)CrossRefGoogle Scholar
  10. 10.
    Bernstein, A., Bader, B., Bengler, K., Künzner, H.: Visual-haptic interfaces in car design at BMW. In: Human Haptic Perception: Basics and Applications, pp. 445–451 (2008)Google Scholar
  11. 11.
    Immersion corp., http://www.immersion.com
  12. 12.
    Bengoechea, E., Sánchez, E., Savall, J.: Optimal cost haptic devices for driving simulators. In: Redondo, M., et al. (eds.) Engineering the User Interface, pp. 29–43. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Gil, J., Díaz, I., Iturritxa, E., Prieto, B.: A haptic interface for automobile gearshift design and benchmark. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 906–911. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Angerilli, M., Frisoli, A., Salsedo, F., Marcheschi, S., Bergamasco, M.: Haptic simulation of an automotive manual gearshift. In: Proceedings of 10th IEEE International Workshop on Robot and Human Interactive Communication, pp. 170–175 (2001)Google Scholar
  15. 15.
    Frisoli, A., Avizzano, C., Bergamasco, M.: Simulation of a manual gearshift with a 2-DOF force-feedback joystick. In: IEEE International Conference on Robotics and Automation, Proceedings 2001 ICRA, vol. 2, pp. 1364–1369 (2001)Google Scholar
  16. 16.
    Serrarrens, A.: Gear changing device for automotive applications. Patent AF16H5904FI (2005)Google Scholar
  17. 17.
    van Diepen, K.: Dynamic haptic control for a 1–dof shift–by–wire system. In: Confidential DCT 2008.71, Eindhoven University of Technology, Eindhoven, The Netherlands (2008)Google Scholar
  18. 18.
    Spong, M., Vidyasagar, M.: Robot dynamics and control. Wiley, Chichester (1989)Google Scholar
  19. 19.
    Olsson, H., Astrom, K., de Wit, C.C., Gafvert, M., Lischinsky, P.: Friction models and friction compensation. European Journal of Control 4 (1998)Google Scholar
  20. 20.
    Ren, J., McIssaac, K.A., Patel, R.V., Peters, T.M.: A potential field model using generalized sigmoid functions. IEEE Transactions on Systems, Man and Cybernetics–Part B: Cybernetics 37(2), 477–484 (2007)CrossRefGoogle Scholar
  21. 21.
    Astrom, K., Haaglund, T.: Advanced PID control. ISA–The Instrumentation, Systems and Automation Society (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Eloísa García-Canseco
    • 1
  • Alain Ayemlong-Fokem
    • 1
  • Alex Serrarens
    • 2
  • Maarten Steinbuch
    • 1
  1. 1.Faculty of Mechanical Engineering, Control Systems Technology GroupEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Drivetrain Innovations BV, Croy 46EindhovenThe Netherlands

Personalised recommendations