Advertisement

Development of Haptic Microgripper for Microassembly Operation

  • Shahzad Khan
  • Ton de Boer
  • Pablo Estevez
  • Hans H. Langen
  • Rob H. Munnig Schmidt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6192)

Abstract

In recent times, dimensions of consumer products have decreased, with components sizes ranging down to micrometers/nanometers. In case of microproducts that are produced in low-medium quantities with many variants, the automation of their assembly process may not be economically profitable. On the other hand, the purely manual approach is not sufficient to fulfill the task with high efficiency since a human operator has limitations for the force and precision requirements. In order to overcome these difficulties, tele-haptic micro-assembly systems are a promising approach. One of the bottlenecks on the development of such a system is the micro-gripper, which should be able to perform pick-and-place of micro-objects with diverse sizes and sense the grasping force. In this work, a developmental effort to build a mechanical micro-gripper capable of sensing grasping force and transferring these forces to the human operator using a 1-DOF master device is presented. Experimental results concerning pick-and-place of micro-objects are demonstrated.

Keywords

Haptic microgripper microassembly teleoperation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Staiger, A., Degen, R.: Micro-assembly technologies and applications. IFIP International Federation for Information Processing 260, 257–263 (2008)Google Scholar
  2. 2.
    Fantoni, G., Porta, M.: A critical review of releasing strategies in microparts handling. In: Fourth International Precision Assembly Seminar IPAS 2008, Chamonix, February 11-13 (2008)Google Scholar
  3. 3.
    Menciassi, A., Eisinberg, A., Izzo, I., Dario, P.: From ‘Macro’ to ‘Micro’ Manipulation: Models and Experiments. IEEE/ASME Trans. on Mechatronics 9(2), 311–320 (2004)CrossRefGoogle Scholar
  4. 4.
    Kunt, E.D.: Design and Realization of a Microassembly Workstation, MS Thesis, Sabanci University (2006)Google Scholar
  5. 5.
    Mitsuishi, M., Watanabe, T., Nakanishi, H., Hori, T., Watanabe, H., Kramer, B.: A tele-micro-surgery system across the Internet with a fixed viewpoint/ operation-point. In: IROS 1995, Pittsburgh, Pennsylvania, USA (August 1995)Google Scholar
  6. 6.
    Khan, S., Sabanovic, A.: Force Feedback pushing Scheme for Micromanipulation Applications. Journal of Micro-Nano Mechatronics 2009 (2009)Google Scholar
  7. 7.
    Khan, S., Sabanovic, A., Nergiz, A.O.: Scaled Bilateral Teleoperation using Discrete-Time Sliding Mode Controller. IEEE Transaction on Industrial Electronics (2006)Google Scholar
  8. 8.
    Cecil, J., Vasquez, D., Powell, D.: A review of gripping and manipulation techniques for micro-assembly applications. International Journal of Production Research 43(4), 819 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
  10. 10.
    Estevez, P., et al.: A Haptic Tele-operated system for Microassembly. In: IPAS 2010, Fifth International Precision Assembly Seminar, France (2010)Google Scholar
  11. 11.
    Fritz, E.C., Christiansson, G.A.V., van der Linde, R.Q.: Haptic Gripper with Adjustable Inherent Passive Properties. In: Proceedings of EuroHaptic 2004, Munich Germany, June 5-7 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shahzad Khan
    • 1
  • Ton de Boer
    • 1
  • Pablo Estevez
    • 1
  • Hans H. Langen
    • 1
  • Rob H. Munnig Schmidt
    • 1
  1. 1.3mE Faculty, PME DepartmentTU DelftDelftThe Netherlands

Personalised recommendations