Collision Avoidance Control for a Multi-fingered Bimanual Haptic Interface

  • Takahiro Endo
  • Takashi Yoshikawa
  • Haruhisa Kawasaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6192)


To present three-directional force at ten fingertips of both human hands, we previously developed a multi-fingered bimanual haptic interface consisting of two five-fingered haptic hands and two interface arms. However, there is a risk that haptic hands and interface arms will collide while a user is manipulating the haptic interface. To alleviate this risk, we propose a collision avoidance control for the multi-fingered bimanual haptic interface. In particular, by constructing the collision avoidance using a penalty method, we hope to reduce the user’s feeling of collision insecurity. Through an experiment, we investigated the validity of the proposed control law.


bimanual haptic interface collision avoidance virtual reality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tachi, S.: Telexistence. World Scientific Publishing Co. Pte. Ltd., Singapore (2010)Google Scholar
  2. 2.
    Ishii, A.: Operation System of a Double-front Work Machine for Simultaneous Operation. In: 23rd Int. Symp. Automation and Robotics in Construction, pp. 539–542 (2006)Google Scholar
  3. 3.
    Hayakawa, M., Hara, K., Sato, D., et al.: Singularity Avoidance by Inputting Angular Velocity to a Redundant Axis During Cooperative Control of a Teleoperated Dual-Arm Robot. In: IEEE ICRA, pp. 2013–2018 (2008)Google Scholar
  4. 4.
  5. 5.
    Kron, A., Schmidt, G., Petzold, B., et al.: Disposal of Explosive Ordnances by Use of a Bimanual Haptic Telepresence System. In: IEEE ICRA, pp. 1968–1973 (2004)Google Scholar
  6. 6.
    Peer, A., Buss, M.: A New Admittance-Type Haptic Interface for Bimanual Manipulations. IEEE/ASME Trans. on Mechatronics 13, 416–428 (2008)CrossRefGoogle Scholar
  7. 7.
    Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)zbMATHGoogle Scholar
  8. 8.
    Yoshikawa, T., Endo, T., Maeno, T., Kawasaki, H.: Multi-Fingered Bimanual Haptic Interface with Three-Dimensional Force Presentation. In: 9th IFAC Symp. Robot Control, pp. 811–816 (2009)Google Scholar
  9. 9.
    Endo, T., Kawasaki, H., Mouri, T., et al.: Five-Fingered Haptic Interface Robot: HIRO III. In: WorldHaptics 2009, pp. 458–463 (2009)Google Scholar
  10. 10.
    Moore, M., Wilhelms, J.: Collision Detection and Response for Computer Animation. Computer Graphics 22, 289–298 (1988)CrossRefGoogle Scholar
  11. 11.
    Hasegawa, S., Sato, M.: Real-time Rigid Body Simulation for Haptic Interactions Based on Contact Volume of Polygonal Objects. Computer Graphics Forum 23, 529–538 (2004)CrossRefGoogle Scholar
  12. 12.
    Mouri, T., Kawasaki, H., Kigaku, K., Ohtsuka, Y.: Novel Control Methods for Multi-fingered Haptic Interface Robot. In: IROS 2006, 1576–1581 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Takahiro Endo
    • 1
  • Takashi Yoshikawa
    • 1
  • Haruhisa Kawasaki
    • 1
  1. 1.Department of Human and Information SystemsGifu UniversityJapan

Personalised recommendations