Development of a 3 DoF MR-Compatible Haptic Interface for Pointing and Reaching Movements

  • Stefan Klare
  • Angelika Peer
  • Martin Buss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6192)


This paper describes a 3 DoF MR-compatible haptic interface which can be used to investigate human brain mechanisms of voluntary finger movements. The newly developed device is built of non-ferromagnetic materials to avoid safety hazards and uses MR-compatible sensors and actuators to not disturb the image quality. The selected parallel kinematics not only guarantees a stiff construction and reduces inertia of moving parts, but also avoids time-varying motion artifacts originating from moving active components. Geometric parameters of the device are selected to optimize manipulability and to cover the workspace of pointing movements using the index finger up to small reaching movements with the arm. Finally, performance indices like transmission-quality, force, velocity, and acceleration capability are evaluated for the presented device.


fMRI haptic interface parallel kinematics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ASTM, Standard test method for measurement of magnetically induced displacement force on medical devices in the magnetic resonance environment (2002),
  2. 2.
    Flueckinger, M., Bullo, M., Chapuis, D., Gassert, R., Perriard, Y.: fMRI compatible haptic interface actuated with traveling wave ultrasonic motor. In: Industry Applications Conference, vol. 3, pp. 2075–2082 (2005)Google Scholar
  3. 3.
    Riener, R., Villgrattner, T., Kleiser, R., Nef, T., Kollias, S.: fMRI-compatible electromagnetic haptic interface. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, pp. 7024–7027 (2005)Google Scholar
  4. 4.
    Gassert, R., Dovat, L., Lambercy, O., Ruffieux, Y., Chapuis, D., Ganesh, G., Burdet, E., Bleuler, H.: A 2-DoF fMRI compatible haptic interface to investigate the neural control of arm movements. In: IEEE International Conference on Robotics and Automation, pp. 3825–3831 (2006)Google Scholar
  5. 5.
    Yu, N., Hollnagel, C., Blickenstorfer, A., Kollias, S., Riener, R.: fMRI-compatible robotic interfaces with fluidic actuation. In: Proceedings of Robotics: Science and Systems IV, Zurich, Switzerland (June 2008)Google Scholar
  6. 6.
    Gassert, R., Moser, R., Burdet, E., Bleuler, H.: MRI/fMRI-compatible robotic system with force feedback for interaction with human motion. IEEE/ASME Transactions on Mechatronics 11(2), 216–224 (2006)CrossRefGoogle Scholar
  7. 7.
    Izawa, J., Shimizu, T., Gomi, H., Toyama, S., Ito, K.: MR compatible manipulandum with ultrasonic motor for fMRI studies. In: IEEE International Conference on Robotics and Automation, pp. 3850–3854 (2006)Google Scholar
  8. 8.
    Hara, M., Matthey, G., Yamamoto, A., Chapuis, D., Gassert, R., Bleuler, H., Higuchi, T.: Development of a 2-dof electrostatic haptic joystick for MRI/fMRI applications. In: IEEE International Conference on Robotics and Automation, pp. 1479–1484 (2009)Google Scholar
  9. 9.
    Dietrichsen, J., Hashambhoy, Y., Rane, T., Shadmehr, R.: Neural correlates of reach errors. The Journal of Neuroscience 25, 9919–9931 (2005)CrossRefGoogle Scholar
  10. 10.
    Li, S., Frisoli, A., Borelli, L., Bergamasco, M., Raabe, M., Greenlee, M.: Design of a new fMRI compatible haptic interface. In: Proceedings of the World Haptics 2009-Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 535–540. IEEE Computer Society, Washington (2009)CrossRefGoogle Scholar
  11. 11.
    Sutter, P., Iatridis, J., Thakor, N.: Response to Reflected-Force Feedback to Fingers in Teleoperations. In: Proc. of the NASA Conference on Space Telerobotics,Google Scholar
  12. 12.
    Wiker, S., Hershkowitz, E., Zik, J.: Teleoperator comfort and psychometric stability: Criteria for limiting master-controller forces of operation and feedback during telemanipulation. In: JPL, California Inst. of Tech., Proceedings of the NASA Conference on Space Telerobotics, vol. 1 (1989)Google Scholar
  13. 13.
    Brooks, T., Robotics, S., Lanham, M.: Telerobotic response requirements. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 113–120 (1990)Google Scholar
  14. 14.
    Abdel-Malek, K., Yang, J., Brand, R., Tanbour, E.: Towards understanding the workspace of human limbs. Ergonomics 47(13), 1386–1405 (2004)CrossRefGoogle Scholar
  15. 15.
    Nakagawara, S., Kajimoto, H., Kawakami, N., Tachi, S., Kawabuchi, I.: An encounter-type multi-fingered master hand using circuitous joints. In: IEEE International Conference on Robotics and Automation, vol. 3, p. 2667. IEEE, Los Alamitos (1999/2005)Google Scholar
  16. 16.
    Gentilucci, M., Benuzzi, F., Gangitano, M., Grimaldi, S.: Grasp with hand and mouth: A kinematic study on healthy subjects. Journal of Neurophysiology 86, 1685 (2001)Google Scholar
  17. 17.
    Fischer, P., Daniel, R., Siva, K.: Specification and design of input devices for teleoperation. In: IEEE International Conference on Robotics and Automation, pp. 540–545 (1990)Google Scholar
  18. 18.
    McAffee, D., Fiorini, P.: Hand controller design requirements and performance issues in telerobotics. In: Fifth International Conference on Advanced Robotics, Robots in Unstructured Environments, pp. 186–192 (1991)Google Scholar
  19. 19.
    Hayward, V., Astley, O.: Performance measures for haptic interfaces. In: Robotics Research-International Symposium, Citeseer, vol. 7, pp. 195–206 (1996)Google Scholar
  20. 20.
    Clavel, R.: Conception d’un robot parallele rapide a 4 degres de liberte. PhD thesis, Ecole Polytechnique Federal de Lausanne (1991)Google Scholar
  21. 21.
    Uffmann, K., Ladd, M.: Actuation Systems for MR Elastography. IEEE Engineering in medicine and biology magazine 739, 28–34 (2008)CrossRefGoogle Scholar
  22. 22.
    Elhawary, H., Zivanovic, A., Rea, M., Davies, B., Besant, C., Young, I., Lamperth, M.: A modular approach to MRI-compatible robotics. IEEE Engineering in medicine and biology magazine 739, 35–41 (2008)CrossRefGoogle Scholar
  23. 23.
    Gassert, R., Burdet, E., Chinzei, K.: Opportunities and challenges in MR-compatible robotics. IEEE Engineering in medicine and biology magazine 27, 15–22 (2008)CrossRefGoogle Scholar
  24. 24.
    Chinzei, K., Kikinis, R., Jolesz, F.: MR compatibility of mechatronic devices: design criteria. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1020–1030. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  25. 25.
    Codourey, A.: Dynamic modeling of parallel robots for computed-torque control implementation. The International Journal of Robotics Research 17(12), 1325 (1998)CrossRefGoogle Scholar
  26. 26.
    Neugebauer, R.: Parallelkinematische Maschinen. Springer, Heidelberg (2006) (in German)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Stefan Klare
    • 1
  • Angelika Peer
    • 1
  • Martin Buss
    • 1
  1. 1.Technische Universität MünchenMunichGermany

Personalised recommendations