Causality Inversion in the Reproduction of Roughness

  • Michaël Wiertlewski
  • José Lozada
  • Edwige Pissaloux
  • Vincent Hayward
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6192)


When a finger scans a non-smooth surface, a sensation of roughness is experienced. A similar sensation is felt when a finger is in contact with a mobile surface vibrating in the tangential direction. Since an actual finger-surface interaction results in a varying friction force, how can a measured friction force can be converted into skin relative displacement. With a bidirectional apparatus that can measure this force and transform it into displacement with unambiguous causality, such mapping could be experimentally established. A pilot study showed that a subjectively equivalent sensation of roughness can be achieved betweem a fixed real surface and a vibrated mobile surface.


Roughness simulation Haptic devices Virtual reality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lederman, S.J., Taylor, M.M.: Fingertip force, surface geometry, and the perception of roughness by active touch. Perception & Psychophysics 12(5), 401–408 (1972)CrossRefGoogle Scholar
  2. 2.
    Campion, G., Hayward, V.: On the synthesis of haptic textures. IEEE Transactions on Robotics 24(3), 527–536 (2008)CrossRefGoogle Scholar
  3. 3.
    Yamamoto, A., Nagasawa, S., Yamamoto, H., Higuchi, T.: Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems. IEEE Transactions on Visualization and Computer Graphics 12(2), 168–177 (2006)CrossRefGoogle Scholar
  4. 4.
    Takasaki, M., Kotani, H., Mizuno, T., Nara, T.: Transparent surface acoustic wave tactile display. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2005, pp. 3354–3359 (2005)Google Scholar
  5. 5.
    Biet, M., Giraud, F., Lemaire-Semail, B.: Squeeze film effect for the design of an ultrasonic tactile plate. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 54(12), 2678–2688 (2007)CrossRefGoogle Scholar
  6. 6.
    Winfield, L., Glassmire, J., Colgate, J.E., Peshkin, M.: T-PaD: tactile pattern display through variable friction reduction. In: Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics, pp. 421–426 (2007)Google Scholar
  7. 7.
    Smith, A.M., Chapman, E.C., Deslandes, M., Langlais, J.S., Thibodeau, M.P.: Role of friction and tangential force variation in the subjective scaling of tactile roughness. Experimental Brain Research 144(2), 211–223 (2002)CrossRefGoogle Scholar
  8. 8.
    Smith, A.M., Basile, G., Theriault-Groom, J., Fortier-Poisson, P., Campion, G., Hayward, V.: Roughness of simulated surfaces examined with a haptic tool; effects of spatial period, friction, and resistance amplitude. Experimental Brain Research 202(1), 33–43 (2010)CrossRefGoogle Scholar
  9. 9.
    Maeno, T., Otokawa, K., Konyo, M.: Tactile display of surface texture by use of amplitude modulation of ultrasonic vibration. In: IEEE Ultrasonics Symposium, pp. 62–65 (2006)Google Scholar
  10. 10.
    Hogan, N.: Impedance control: An approach to manipulation. Journal of Dynamic Systems, Measurements, and Control 107, 1–7 (1985)CrossRefzbMATHGoogle Scholar
  11. 11.
    Campion, G., Hayward, V.: Fast calibration of haptic texture synthesis algorithms. IEEE Transactions on Haptics 2(2), 85–93 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michaël Wiertlewski
    • 1
    • 2
  • José Lozada
    • 1
  • Edwige Pissaloux
    • 2
  • Vincent Hayward
    • 2
  1. 1.cea, list, Sensory and Ambient Interfaces LaboratoryFontenay-Aux-RosesFrance
  2. 2.Institut des Systèmes Intelligents et de Robotiqueupmc Univ Paris 6ParisFrance

Personalised recommendations