Skip to main content

Preliminary Experiment Combining Virtual Reality Haptic Shoes and Audio Synthesis

  • Conference paper
Haptics: Generating and Perceiving Tangible Sensations (EuroHaptics 2010)

Abstract

We describe a system that provides combined auditory and haptic sensations to simulate walking on different grounds. It uses a physical model that drives haptic transducers embedded in sandals and headphones. The model represents walking interactions with solid surfaces that can creak, or be covered with crumpling material. In a preliminary discrimination experiment, 15 participants were asked to recognize four different surfaces in a list of sixteen possibilities and under three different conditions, haptics only, audition only and combined haptic-audition. The results indicate that subjects are able to recognize most of the stimuli in the audition only condition, and some of the material properties such as hardness in the haptics only condition. The combination of auditory and haptic cues did not improve recognition significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lederman, S.: Auditory texture perception. Perception (1979)

    Google Scholar 

  2. Jousmaki, V., Hari, R.: Parchment-skin illusion: sound-biased touch. Current Biology 8(6), R190–R191 (1998)

    Article  Google Scholar 

  3. Shimojo, S., Shams, L.: Sensory modalities are not separate modalities: plasticity and interactions. Current Opinion in Neurobiology 11(4), 505–509 (2001)

    Article  Google Scholar 

  4. Bresciani, J.P., Ernst, M.O., Drewing, K., Bouyer, G., Maury, V., Kheddar, A.: Feeling what you hear: Auditory signals can modulate tactile tap perception. Experimental Brain Research 162, 172–180 (2005)

    Article  Google Scholar 

  5. Ramstein, C., Hayward, V.: The pantograph: A large workspace haptic device for a multi-modal human-computer interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2004, ACM/SIGCHI Companion-4/94, pp. 57–58 (1994)

    Google Scholar 

  6. DiFranco, D., Beauregard, G.L., Srinivasan, M.: The effect of auditory cues on the haptic perception of stiffness in virtual environments. In: Proceedings of the ASME Dynamic Systems and Control Division (1997)

    Google Scholar 

  7. DiFilippo, D., Pai, D.K.: Contact interaction with integrated audio and haptics. In: Proceedings of the International Conference on Auditory Display, ICAD (2000)

    Google Scholar 

  8. Pai, D., Doel, K., James, D., Lang, J., Lloyd, J., Richmond, J., Yau, S.: Scanning physical interaction behavior of 3d objects. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 87–96 (2001)

    Google Scholar 

  9. Sreng, J., Bergez, F., Legarrec, J., Lécuyer, A., Andriot, C.: Using an event-based approach to improve the multimodal rendering of 6dof virtual contact. In: Proceedings of ACM Symposium on Virtual Reality Software and Technology (ACM VRST), pp. 173–179 (2007)

    Google Scholar 

  10. Avanzini, F., Crosato, P.: Integrating physically based sound models in a multimodal rendering architecture. The Journal of Visualization and Computer Animation 17(3-4), 411–419 (2006)

    Google Scholar 

  11. Giordano, B.L., Mcadams, S., Visell, Y., Cooperstock, J., Yao, H.Y., Hayward, V.: Non-visual identification of walking grounds. Journal of the Acoustical Society of America 123(5), 3412 (2008)

    Article  Google Scholar 

  12. Hayward, V., MacLean, K.E.: Do it yourself haptics, part-i. IEEE Robotics and Automation Magazine 14(4), 88–104 (2007)

    Article  Google Scholar 

  13. Iwata, H., Yano, H., Tomioka, H.: Powered shoes. In: ACM SIGGRAPH 2006 Emerging technologies, p. 28 (2006)

    Google Scholar 

  14. Schmidt, H., Hesse, S., Bernhardt, R., Krüger, J.: Hapticwalker—a novel haptic foot device. ACM Transactions on Applied Perception 2(2), 166–180 (2005)

    Article  Google Scholar 

  15. Visell, Y., Law, A., Cooperstock, J.R.: Touch is everywhere: Floor surfaces as ambient haptic interfaces. IEEE Transactions on Haptics 2, 148–159 (2009)

    Article  Google Scholar 

  16. Fu, X., Li, D.: Haptic shoes: representing information by vibration. In: Proceedings of the 2005 Asia-Pacific Symposium on Information Visualisation, pp. 47–50 (2005)

    Google Scholar 

  17. Magana, M., Velazquez, R.: On-shoe tactile display. In: IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE 2008), pp. 114–119 (2008)

    Google Scholar 

  18. Nordahl, R., Serafin, S., Turchet, L.: Sound synthesis and evaluation of interactive footsteps for virtual reality applications. In: Proc. IEEE VR 2010 (2010)

    Google Scholar 

  19. Avanzini, F., Serafin, S., Rocchesso, D.: Interactive simulation of rigid body interaction with friction-induced sound generation. IEEE Transactions on Speech and Audio Processing 13(5 Part 2), 1073–1081 (2005)

    Article  Google Scholar 

  20. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. ASME Journal of Applied Mechanics 42(2), 440–445 (1975)

    Article  Google Scholar 

  21. Avanzini, F., Rocchesso, D.: Modeling collision sounds: Non-linear contact force. In: Proc. COST-G6 Conf. Digital Audio Effects (DAFx 2001), pp. 61–66 (2001)

    Google Scholar 

  22. Dupont, P., Hayward, V., Armstrong, B., Altpeter, F.: Single state elastoplastic friction models. IEEE Transactions on Automatic Control 47(5), 787–792 (2002)

    Article  MathSciNet  Google Scholar 

  23. Cook, P.: Physically Informed Sonic Modeling (PhISM): Synthesis of Percussive Sounds. Computer Music Journal 21(3), 38–49 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nordahl, R., Berrezag, A., Dimitrov, S., Turchet, L., Hayward, V., Serafin, S. (2010). Preliminary Experiment Combining Virtual Reality Haptic Shoes and Audio Synthesis. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds) Haptics: Generating and Perceiving Tangible Sensations. EuroHaptics 2010. Lecture Notes in Computer Science, vol 6192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14075-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14075-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14074-7

  • Online ISBN: 978-3-642-14075-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics