Advertisement

Haptic Assistance in Virtual Environments for Motor Rehabilitation

  • Jaka Ziherl
  • Domen Novak
  • Andrej Olenšek
  • Marko Munih
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6192)

Abstract

This paper presents the MIMICS MMS rehabilitation system with a virtual rehabilitation task that includes several modes of haptic assistance. We observed the influence of these different modes of assistance on task performance and work performed toward the target during the pick-and-place movement. Twenty-three hemiparetic subjects and a control group of twenty-three subjects participated in the study. The haptic assistance resulted in improved task performance and lower work performed during pick-and-place movement.

Keywords

haptic interface haptic assistance rehabilitation robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kanehiro, F., Hirukawa, H., Kajita, S.: OpenHRP: Open Architecture Humanoid Robotics Platform. Int. J. Robot. Res. 23, 155–165 (2004)CrossRefGoogle Scholar
  2. 2.
    Sunderland, A., Tinson, D.J., Bradley, E.L., Fletcher, D., Hewer, R.L., Wade, D.T.: Enhanced physical therapy improves recovery of arm function after stroke. A randomised controlled trial. J. Neurol. Neurosurg. Psychiatr. 55, 530–535 (1992)CrossRefGoogle Scholar
  3. 3.
    Mihelj, M., Nef, T., Reiner, R.: A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots. Adv. Robotics 21, 843–867 (2007)CrossRefGoogle Scholar
  4. 4.
    Hogan, N., Krebs, H.I., Charnnarong, J., Srikrishna, P., Sharon, A.: MIT - MANUS: A workstation for manual therapy and training I. In: IEEE International Workshop on Robot and Human Communication, pp. 161–165. IEEE Press, New York (1992)Google Scholar
  5. 5.
    Lum, P.S., Burgar, C.G., Shor, P.C.: Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 184–194 (2004)CrossRefGoogle Scholar
  6. 6.
    Deneve, A., Moughamir, S., Afilal, L., Zaytoon, J.: Control system design of a 3-DOF upper limbs rehabilitation robot. Comput. Meth. Prog. Bio. 89, 202–214 (2008)CrossRefGoogle Scholar
  7. 7.
    Loureiro, R.C.V., Harwin, W.S.: Reach & Grasp Therapy: Design and Control of a 9-DOF Robotic Neuro-rehabilitation System. In: IEEE 10th International Conference on Rehabilitation Robotics, pp. 757–763. IEEE Press, New York (2007)Google Scholar
  8. 8.
    Borgedoni, M., Cugini, U.: Haptic modeling in the conceptual phases of product design. Virtual Real 9, 192–202 (2006)CrossRefGoogle Scholar
  9. 9.
    Smith, R.: Open Dynamics Engine - ODE (2007), http://www.ode.org
  10. 10.
    Farin, G.: Curves and Surfaces for CAGD. Morgan Kaufmann, San Francisco (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jaka Ziherl
    • 1
  • Domen Novak
    • 1
  • Andrej Olenšek
    • 1
  • Marko Munih
    • 1
  1. 1.Laboratory of Robotics and Biomedical Engineering, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations