Advertisement

Design of a Multimodal VR Platform for the Training of Surgery Skills

  • Florian Gosselin
  • Fabien Ferlay
  • Sylvain Bouchigny
  • Christine Mégard
  • Farid Taha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6192)

Abstract

There are many ways by which we can learn new skills. For sensory motor skills, repeated practice (often under supervision and guidance of an expert mentor) is required in order to progressively understand the consequences of our actions, adapt our behavior and develop optimal perception-action loops needed to intuitively and efficiently perform the task. VR multimodal platforms, if adequately designed, can offer an alternative to real environments therefore. Indeed they present interesting features: controlled environment, measure of the user’s performance, display of quantitative feedback. This paper presents such a platform that was developed for surgery skills training.

Keywords

multimodal platform training skills haptics surgery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kneebone, R.: Simulation in surgical training: educational issues and practical implications. Med. Educ. 37, 267–277 (2003)CrossRefGoogle Scholar
  2. 2.
    Baca, A., Kornfeind, P.: Rapid Feedback Systems for Elite Sports Training. Pervasive Computing 5(4), 70–76 (2006)CrossRefGoogle Scholar
  3. 3.
    Palluel-Germain, R., Bara, F., de Boisferon, A.H., Hennion, B., Gouagout, P., Gentaz, E.: A Visuo-Haptic Device – Telemaque – Increases Kindergarten Children’s Handwriting Acquisition. In: Proc. Worldhaptics Conf., Tsukuba, Japan, pp. 72–77 (2007)Google Scholar
  4. 4.
    Sourin, A., Sourina, O., Howe, T.S.: Virtual Orthopedic Surgery Training. Computer Graphics and Applications 20(3), 6–9 (2000)CrossRefGoogle Scholar
  5. 5.
    Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G., Zorcolo, A.: Real-time Haptic and Visual Simulation of Bone Dissection. In: Proc. IEEE Virtual Reality, Orlando, Florida, pp. 209–216 (2002)Google Scholar
  6. 6.
    Morris, D., Sewell, C., Barbagli, F., Salisbury, K., Belvins, N.H., Girod, S.: Visuohaptic Simulation of Bone Surgery for Training and Evaluation. Computer Graphics and Applications 26(6), 48–57 (2006)CrossRefGoogle Scholar
  7. 7.
    Terada, T., Ogata, M., Kukikawa, T., Hongo, S., Nagasaka, M., Takanami, K., Kajihara, K., Fujino, M.: Virtual Human Body using Haptic Devices for Endoscopic Surgery Training Simulator. In: Proc. 4th IEEE Int. Conf. on Mechatronics, Kumamoto, Japan, pp. 1–5 (2007)Google Scholar
  8. 8.
    Reznick, R.K., MacRae, H.: Teaching surgical skills, changes in the wind. The New England Journal of Medicine 355(25), 2664–2669 (2006)CrossRefGoogle Scholar
  9. 9.
    Haque, S., Srinivasan, S.: A Meta-Analysis of the Training Effectiveness of Virtual Reality Surgical Simulators. IEEE Transactions on Information Technology in Biomedicine 10(1), 51–58 (2006)CrossRefGoogle Scholar
  10. 10.
    Larsen, C.R., Soerensen, J.L., Grantcharov, T.P., Dalsgaard, T., Schouenborg, L., Ottosen, C., Schroeder, T.V., Ottesen, B.S.: Effect of virtual reality training on laparoscopic surgery: randomized controlled trial. BMJ 338, b1802 (2009)CrossRefGoogle Scholar
  11. 11.
    Müller-Tomfelde, C.: Interaction sound feedback in a haptic virtual environment to improve motor skill acquisition. In: Proc. Int. Conf. on Auditory Display, Sydney, Australia (2004)Google Scholar
  12. 12.
    Gosselin, F.: Développement d’outils d’aide à la conception d’organes de commande pour la téléopération à retour d’effort. PhD dissertation, University of Poitiers, 358 p. (2000)Google Scholar
  13. 13.
    Gosselin, F., Bidard, C., Brisset, J.: Design of a high fidelity haptic device for telesurgery. In: Proc. IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, pp. 206–211 (2005)Google Scholar
  14. 14.
    Hoffmann, P., Gosselin, F., Taha, F., Bouchigny, S., Hammershøi, D.: Analysis of the drilling sound in maxillo facial surgery. In: Proc. Int. Conf. on Multimodal Interfaces for Skills Transfer, Bilbao, Spain, pp. 121–127 (2009)Google Scholar
  15. 15.
    Sewell, C., Blevins, N.H., Peddamatham, S., Tan, H.Z., Morris, D., Salisbury, K.: The Effect of Virtual Haptic Training on Real Surgical Drilling Proficiency. In: Proc. Worldhaptics Conf., Tsukuba, Japan, pp. 601–603 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Florian Gosselin
    • 1
  • Fabien Ferlay
    • 2
  • Sylvain Bouchigny
    • 2
  • Christine Mégard
    • 2
  • Farid Taha
    • 3
  1. 1.CEA, LIST, Interactive Robotics LaboratoryFontenay aux RosesFrance
  2. 2.CEA, LIST, Sensory and Ambient Interfaces LaboratoryFontenay aux RosesFrance
  3. 3.Department of Oral and Maxillofacial Surgery, Place Victor PauchetAmiens University HospitalAmiensFrance

Personalised recommendations