Skip to main content

Abstract

This paper focuses on the detection of olive trees in Very High Resolution images. The presented methodology makes use of machine learning to solve the problem. More concretely, we use the K-Means clustering algorithm to detect the olive trees. K-Means is frequently used in image segmentation obtaining good results. It is an automatic algorithm that obtains the different clusters in a quick way. In this first approach the tests done show encouraging results detecting all trees in the example images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur, D., Vassilvitskii, S.: How Slow is the K-Means Method? In: Proceedings of the 2006 Symposium on Computational Geometry (SoCG), pp. 144–153 (2006)

    Google Scholar 

  2. Brandberg, T., Walter, F.: Automated Delineation of Individual Tree Crowns in High Spatial Resolution Aerial Images by Multi-Scale Analysis. Machine Vision and Applications 11, 64–73 (1998)

    Article  Google Scholar 

  3. Gougeon, F.: A crown following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images. Canadian Journal of Remote Sensing 3(21), 274–284 (1995)

    Google Scholar 

  4. European Comission, Joint Research Center, http://ec.europa.eu/dgs/jrc/index.cfm (last visit January 25, 2010)

  5. Lloyd, S.P.: Least square quantization in PCM. Bell Telephone Laboratories Paper (1982); Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–137 (1957)

    Google Scholar 

  6. Karantzalos, K., Argialas, D.: Towards the automatic olive trees extraction from aerial and satellite imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 35(5), 1173–1177 (2004)

    Google Scholar 

  7. Kay, S., Leo, P., Peedel, S., Giordino, G.: Computer-assisted recognition of olive trees in digital imagery. In: Proceedings of International Society for Photogrammetry and Remote Sensing Conference, pp. 6–16 (1998)

    Google Scholar 

  8. MacKay, D.: An Example Inference Task: Clustering. In: Information Theory, Inference and Learning Algorithms, ch. 20, pp. 284–292. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  9. MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press (1967)

    Google Scholar 

  10. Masson, J.: Use of Very High Resolution Airborne and Spaceborne Imagery: a Key Role in the Management of Olive, Nuts and Vineyard Schemes in the Frame of the Common Agricultural Policy of the European Union. In: Proceedings of the Information and Technology for Sustainable Fruit and Vegetable Production (FRUTIC 2005), pp. 709–718 (2005)

    Google Scholar 

  11. Bagli, S.: Olicount v2, Technical documentation, Joint Research Centre IPSC/G03/P/SKA/ska D (5217) (2005)

    Google Scholar 

  12. Pollock, R.J.: A model-based approach to automatically locating tree crowns in high spatial resolution images. In: Desachy (ed.) Image and Signal Processing for Remote Sensing. SPIE, vol. 2315, 526–537 (1994)

    Google Scholar 

  13. Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Heidelberg (2004)

    Google Scholar 

  14. Weka Software, http://www.cs.waikato.ac.nz/~ml/weka/ (last visit January 25, 2010)

  15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moreno-Garcia, J., Linares, L.J., Rodriguez-Benitez, L., Solana-Cipres, C. (2010). Olive Trees Detection in Very High Resolution Images. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. IPMU 2010. Communications in Computer and Information Science, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14058-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14058-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14057-0

  • Online ISBN: 978-3-642-14058-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics