Skip to main content

Abstract

We review various representations of the median and related aggregation functions. An advantage of the median is that it discards extreme values of the inputs, and hence exhibits a better central tendency than the arithmetic mean. However the value of the median depends on only one or two central inputs. Our aim is to design median-like aggregation functions whose value depends on several central inputs. Such functions will preserve the stability of the median against extreme values, but will take more inputs into account. A method based on graduation curves is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, L.-E., Elfving, T.: Interpolation and approximation by monotone cubic splines. J. Approx. Theory 66, 302–333 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barral Souto, J.: El modo y otras medias, casos particulares de una misma expresion matematica. Boletin Matematico 11, 29–41 (1938)

    MATH  Google Scholar 

  3. Beliakov, G.: Shape preserving approximation using least squares splines. Approximation Theory and Applications 16, 80–98 (2000)

    MATH  MathSciNet  Google Scholar 

  4. Beliakov, G.: Monotone approximation of aggregation operators using least squares splines. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 659–676 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg (2007)

    Google Scholar 

  6. Borwein, J.M., Borwein, P.B.: PI and the AGM: A Study in Analytic Number Theory and Computational Complexity. Wiley, New York (1987)

    MATH  Google Scholar 

  7. Calvo, T., Beliakov, G.: Aggregation functions based on penalties. Fuzzy Sets and Systems 161, 1420–1436 (2010) doi:10.1016/j.fss.2009.05.012

    Article  MATH  Google Scholar 

  8. Calvo, T., Mesiar, R., Yager, R.: Quantitative weights and aggregation. IEEE Trans. on Fuzzy Systems 12, 62–69 (2004)

    Article  Google Scholar 

  9. Gini, C.: Le Medie. Unione Tipografico-Editorial Torinese, Milan (1958); Russian translation, Srednie Velichiny, Statistica, Moscow (1970)

    Google Scholar 

  10. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University press, Cambridge (2009)

    MATH  Google Scholar 

  11. Jackson, D.: Note on the median of a set of numbers. Bulletin of the Americam Math. Soc. 27, 160–164 (1921)

    Article  MATH  Google Scholar 

  12. Kolesárová, A., Mesiar, R., Mayor, G.: Weighted ordinal means. Inform. Sci. 177, 3822–3830 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mesiar, R.: Fuzzy set approach to the utility, preference relations, and aggregation operators. Europ. J. Oper. Res. 176, 414–422 (2007)

    Article  MATH  Google Scholar 

  14. Mesiar, R., Špirková, J., Vavríková, L.: Weighted aggregation operators based on minimization. Inform. Sci. 178, 1133–1140 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sapidis, N.S., Kaklis, P.D.: An algorithm for constructing convexity and monotonicity preserving splines in tension. Comp. Aided Geom. Design 5, 127–137 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schweikert, D.G.: An interpolation curve using a spline in tension. J. Math. Phys. 45, 312–317 (1966)

    MATH  MathSciNet  Google Scholar 

  17. Torra, Y., Narukawa, V.: Modeling Decisions. Information Fusion and Aggregation Operators. Springer, Berlin (2007)

    Google Scholar 

  18. Yager, R.: Fusion of ordinal information using weighted median aggregation. Int. J. Approx. Reasoning 18, 35–52 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yager, R.: Centered owa operators. Soft Computing 11, 631–639 (2007)

    Article  MATH  Google Scholar 

  20. Yager, R., Rybalov, A.: Understanding the median as a fusion operator. Int. J. General Syst. 26, 239–263 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zarghami, M., Szidarovszky, F., Ardakanian, R.: Sensitivity analysis of the OWA operator. IEEE Trans. on Syst. Man and Cybernetics Part B 38(2), 547–552 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beliakov, G., Bustince, H., Fernandez, J. (2010). On the Median and Its Extensions. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Computational Intelligence for Knowledge-Based Systems Design. IPMU 2010. Lecture Notes in Computer Science(), vol 6178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14049-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14049-5_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14048-8

  • Online ISBN: 978-3-642-14049-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics