Skip to main content

Possibility Theory and Formal Concept Analysis: Context Decomposition and Uncertainty Handling

  • Conference paper
Computational Intelligence for Knowledge-Based Systems Design (IPMU 2010)

Abstract

Formal Concept Analysis uses a simple representation framework called ‘formal context’. In the classical setting, a formal context specifies existing Boolean relationships between a set of objects and their corresponding properties. Formal concepts are then defined as pairs consisting of a set of objects and a set of properties that mutually characterize each other through a Galois connection. Another Galois connection is also introduced in this setting on the basis of operators induced by a recent possibility theory reading of Formal Concept Analysis. It is shown that this second Galois connection enables us to characterize independent sub-contexts inside the formal context. The second part of the paper discusses an extension of Formal Concept Analysis that has not been much studied, namely the situation where one may be uncertain on the fact that an object possesses or not a Boolean property. Uncertainty is here represented in the possibilistic representation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belohlavek, R.: Fuzzy Galois connections. Math. Logic Quart. 45, 497–504 (1999)

    MATH  MathSciNet  Google Scholar 

  2. Belohlavek, R.: Fuzzy Relational Systems. Kluwer Acad. Pub., Dordrecht (2002)

    MATH  Google Scholar 

  3. Belohlavek, R., Vychodil, V.: What is a fuzzy concept lattice. In: Proc. CLAV ’05, Olomuc, pp. 34–45. Czech Republic (2005)

    Google Scholar 

  4. Bosc, P., Pivert, O.: About projection-selection-join queries addressed to possibilistic relational databases. IEEE Trans. Fuzzy Systems 13(1), 124–139 (2005)

    Article  Google Scholar 

  5. Ferré, S., Ridoux, O.: Introduction to logical information systems. Information Processing and Mgmt. 40, 383–419 (2004)

    Article  MATH  Google Scholar 

  6. Burmeister, P., Holzer, R.: Treating incomplete knowledge in formal concepts analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 11–126. Springer, Heidelberg (2005)

    Google Scholar 

  7. Burusco, A., Fuentes-Gonzalez, R.: The study of the L-fuzzy concept lattice. Mathware & Soft Comput. 3, 209–218 (1994)

    MathSciNet  Google Scholar 

  8. Djouadi, Y., Prade, H.: Interval-valued fuzzy formal concept analysis. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 592–601. Springer, Heidelberg (2009)

    Google Scholar 

  9. Djouadi, Y., Prade, H.: Interval-valued fuzzy Galois connections: algebraic requirements and concept lattice construction. Fund. Inform. (to appear)

    Google Scholar 

  10. Djouadi, Y., Dubois, D., Prade, H.: On the possible meanings of degrees when making formal concept analysis fuzzy. In: EUROFUSE’09, Preference Modelling and Decision Analysis Workshop, Pamplona, Spain, pp. 253–258 (2009)

    Google Scholar 

  11. Djouadi, Y., Dubois, D., Prade, H.: Différentes extensions floues de l’analyse formelle de concepts. Actes Renc. Franc. sur la Logique Floue et ses Applications (LFA 2009) Cépadues edn., Toulouse, pp. 141–148 (2009)

    Google Scholar 

  12. Dubois, D.: On ignorance and contradiction considered as truth-values. Logic Journal of the IGPL 16(2), 195–216 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)

    MATH  Google Scholar 

  14. Dubois, D., Dupin de Saint Cyr, F., Prade, H.: A possibilty-theoretic view of formal concept analysis. Fundamenta Informaticae 75(1-4), 195–213 (2007)

    MATH  MathSciNet  Google Scholar 

  15. Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In: Gabbay, D., Smets, P. (eds.) Quantified Representation of Uncertainty and Imprecision. Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 1, pp. 169–226. Kluwer Acad. Publ., Dordrecht (1998)

    Google Scholar 

  16. Dubois, D., Prade, H.: Possibility theory and formal concept analysis in information systems. In: Proc. IFSA’09, International Fuzzy Systems Association World Congress, Lisbon, Portugal, pp. 1021–1026 (2009)

    Google Scholar 

  17. Düntsch, I., Orlowska, E.: Mixing modal and sufficiency operators. Bulletin of the Section of Logic, Polish Academy of Sciences 28(2), 99–106 (1999)

    MATH  Google Scholar 

  18. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  19. Medina, J., Ojeda-Aciego, M., Ruiz-Calvino, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets and Systems 160(2), 130–144 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Messai, N., Devignes, M., Napoli, A., Tabbone, M.: Many-valued concept lattices for conceptual clustering and information retrieval. In: Proc. 18th Europ. Conf. on Artif. Intellig., Patras, pp. 722–727 (2008)

    Google Scholar 

  21. Pollandt, S.: Fuzzy Begriffe. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  22. Yao, Y.Y., Chen, Y.: Rough Set Approximations in Formal Concept Analysis. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 285–305. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Wille, R.: Restructuring Lattice Theory: an Approach Based on Hierarchies of Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)

    Google Scholar 

  24. Wolff, K.E.: A first course in Formal Concept Analysis - How to understand line diagrams. In: Faulbaum, F. (ed.) SoftStat’93, Advances in Statistical Software 4, pp. 429–438. Gustav Fischer Verlag, Stuttgart (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Djouadi, Y., Dubois, D., Prade, H. (2010). Possibility Theory and Formal Concept Analysis: Context Decomposition and Uncertainty Handling. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Computational Intelligence for Knowledge-Based Systems Design. IPMU 2010. Lecture Notes in Computer Science(), vol 6178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14049-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14049-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14048-8

  • Online ISBN: 978-3-642-14049-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics