Skip to main content

Load Forecasting and Neural Networks: A Prediction Interval-Based Perspective

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 302))

Abstract

Successfully determining competitive optimal schedules for electricity generation intimately hinges on the forecasts of loads. The nonstationarity and high volatility of loads make their accurate prediction somewhat problematic. Presence of uncertainty in data also significantly degrades accuracy of point predictions produced by deterministic load forecasting models. Therefore, operation planning utilizing these predictions will be unreliable. This paper aims at developing prediction intervals rather than producing exact point prediction. Prediction intervals are theatrically more reliable and practical than predicted values. The delta and Bayesian techniques for constructing prediction intervals for forecasted loads are implemented here. To objectively and comprehensively assess quality of constructed prediction intervals, a new index based on length and coverage probability of prediction intervals is developed. In experiments with real data, and through calculation of global statistics, it is shown that neural network point prediction performance is unreliable. In contrast, prediction intervals developed using the delta and Bayesian techniques are satisfactorily narrow, with a high coverage probability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hobbs, B.F., Helman, U., Jitprapaikulsarn, S., Konda, S., Maratukulam, D.: Artificial neural networks for short-term energy forecasting: Accuracy and economic value. Neurocomputing 23(1-3), 71–84 (1998)

    Article  Google Scholar 

  2. Metaxiotis, K., Kagiannas, A., Askounis, D., Psarras, J.: Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher. Energy Conversion and Management 44(9), 1525–1534 (2003)

    Article  Google Scholar 

  3. Al-Hamadi, H.M., Soliman, S.A.: Short-term electric load forecasting based on kalman filtering algorithm with moving window weather and load model. Electric Power Systems Research 68(1), 47–59 (2004)

    Article  Google Scholar 

  4. Papalexopoulos, A., Hesterberg, T.: A regression-based approach to short-term system load forecasting. IEEE Transactions on Power Systems 5(4), 1535–1547 (1990)

    Article  Google Scholar 

  5. Taylor, J.W., de Menezes, L.M., McSharry, P.E.: A comparison of univariate methods for forecasting electricity demand up to a day ahead. International Journal of Forecasting 22(1), 1–16 (2006)

    Article  Google Scholar 

  6. Paliwal, M., Kumar, U.A.: Neural networks and statistical techniques: A review of applications. Expert Systems with Applications 36(1), 2–17 (2009)

    Article  Google Scholar 

  7. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)

    Article  Google Scholar 

  8. Hussain, M.A.: Review of the applications of neural networks in chemical process control - simulation and online implementation. Artificial Intelligence in Engineering 13, 55–68 (1999)

    Article  Google Scholar 

  9. De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. International Journal of Forecasting 22(3), 443–473 (2006)

    Article  Google Scholar 

  10. Bose, B.K.: Neural network applications in power electronics and motor drives—an introduction and perspective. IEEE Transactions on Industrial Electronics 54(1), 14–33 (2007)

    Article  Google Scholar 

  11. Lane, V.R., Scott, S.G.: The neural network model of organizational identification. Organizational Behavior and Human Decision Processes 104(2), 175–192 (2007)

    Article  Google Scholar 

  12. Bakirtzis, A., Petridis, V., Kiartzis, S., Alexiadis, M., Maissis, A.: A neural network short term load forecasting model for the greek power system. IEEE Transactions on Power Systems 11(2), 858–863 (1996)

    Article  Google Scholar 

  13. Chow, T., Leung, C.: Neural network based short-term load forecasting using weather compensation. IEEE Transactions on Power Systems 11(4), 1736–1742 (1996)

    Article  Google Scholar 

  14. Mandal, P., Senjyu, T., Urasaki, N., Funabashi, T., Srivastava, A.: A novel approach to forecast electricity price for pjm using neural network and similar days method. IEEE Transactions on Power Systems 22(4), 2058–2065 (2007)

    Article  Google Scholar 

  15. Fan, S., Chen, L., Lee, W.-J.: Short-term load forecasting using comprehensive combination based on multimeteorological information. IEEE Transactions on Industry Applications 45(4), 1460–1466 (2009)

    Article  Google Scholar 

  16. Barzamini, R., Menhaj, M., Khosravi, A., Kamalvand, S.: Short term load forecasting for iran national power system and its regions using multi layer perceptron and fuzzy inference systems. In: Proceedings of IEEE International Joint Conference on Neural Networks, IJCNN 2005, vol. 4, pp. 2619–2624 (2005)

    Google Scholar 

  17. de Aquino, R., Silva, G., Lira, M., Ferreira, A., Carvalho, M., Neto, O., de Oliveira, J.: Combined artificial neural network and adaptive neuro-fuzzy inference system for improving a short-term electric load forecasting. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 779–788. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Kilmer, R.A., Smith, A.E., Shuman, L.J.: Computing confidence intervals for stochastic simulation using neural network metamodels. Computers & Industrial Engineering 36(2), 391–407 (1999)

    Article  Google Scholar 

  19. Zobel, C.W., Keeling, K.B.: Neural network-based simulation metamodels for predicting probability distributions. Computers & Industrial Engineering 54(4), 879–888 (2008)

    Article  Google Scholar 

  20. Hwang, J.T.G., Ding, A.A.: Prediction intervals for artificial neural networks. Journal of the American Statistical Association 92(438), 748–757 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. de Veaux, R.D., Schumi, J., Schweinsberg, J., Ungar, L.H.: Prediction intervals for neural networks via nonlinear regression. Technometrics 40(4), 273–282 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wehrens, R., Putter, H., Buydens, L.M.C.: The bootstrap: a tutorial. Chemometrics and Intelligent Laboratory Systems 54(1), 35–52 (2000)

    Article  Google Scholar 

  23. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  24. da Silva, A., Moulin, L.: Confidence intervals for neural network based short-term load forecasting. IEEE Transactions on Power Systems 15(4), 1191–1196 (2000)

    Article  Google Scholar 

  25. Papadopoulos, G., Edwards, P., Murray, A.: Confidence estimation methods for neural networks: a practical comparison. IEEE Transactions on Neural Networks 12(6), 1278–1287 (2001)

    Article  Google Scholar 

  26. Tibshirani, R.: A comparison of some error estimates for neural network models. Neural Computation 8, 152–163 (1996)

    Article  Google Scholar 

  27. Lu, T., Viljanen, M.: Prediction of indoor temperature and relative humidity using neural network models: model comparison. Neural Computing & Applications 18(4), 345–357 (2009)

    Article  Google Scholar 

  28. Yu, G., Qiu, H., Djurdjanovic, D., Lee, J.: Feature signature prediction of a boring process using neural network modeling with confidence bounds. The International Journal of Advanced Manufacturing Technology 30(7), 614–621 (2006)

    Article  Google Scholar 

  29. Jia, Y., Culver, T.B.: Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. Journal of Hydrology 331(3-4), 580–590 (2006)

    Article  Google Scholar 

  30. Ho, S., Xie, M., Tang, L., Xu, K., Goh, T.: Neural network modeling with confidence bounds: a case study on the solder paste deposition process. IEEE Transactions on Electronics Packaging Manufacturing 24(4), 323–332 (2001)

    Article  Google Scholar 

  31. Khosravi, A., Nahavandi, S., Creighton, D.: A prediction interval-based approach to determine optimal structures of neural network metamodels. Expert Systems with Applications 37, 2377–2387 (2010)

    Article  Google Scholar 

  32. Khosravi, A., Nahavandi, S., Creighton, D.: Constructing prediction intervals for neural network metamodels of complex systems. In: International Joint Conference on Neural Networks (IJCNN), pp. 1576–1582 (2009)

    Google Scholar 

  33. Alonso, A.M., Sipols, A.E.: A time series bootstrap procedure for interpolation intervals. Computational Statistics & Data Analysis 52(4), 1792–1805 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Chiu, C.-C., Kao, L.-J., Cook, D.F.: Combining a neural network with a rule-based expert system approach for short-term power load forecasting in taiwan. Expert Systems with Applications 13(4), 299–305 (1997)

    Article  Google Scholar 

  35. Zhao, J.H., Dong, Z.Y., Xu, Z., Wong, K.P.: A statistical approach for interval forecasting of the electricity price. IEEE Transactions on Power Systems 23(2), 267–276 (2008)

    Article  Google Scholar 

  36. Heskes, T.: Practical confidence and prediction intervals. In: Mozer, T.P.M., Jordan, M. (eds.) Neural Information Processing Systems, vol. 9, pp. 176–182. MIT Press, Cambridge (1997)

    Google Scholar 

  37. MacKay, D.J.C.: The evidence framework applied to classification networks. Neural Computation 4(5), 720–736 (1992)

    Article  Google Scholar 

  38. Hagan, M., Menhaj, M.: Training feedforward networks with the marquardt algorithm. IEEE Transactions on Neural Networks 5(6), 989–993 (1994)

    Article  Google Scholar 

  39. Fay, D., Ringwood, J.V., Condon, M., Kelly, M.: 24-h electrical load data–a sequential or partitioned time series? Neurocomputing 55(3-4), 469–498 (2003)

    Article  Google Scholar 

  40. Ghiassi, M., Zimbra, D.K., Saidane, H.: Medium term system load forecasting with a dynamic artificial neural network model. Electric Power Systems Research 76(5), 302–316 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khosravi, A., Nahavandi, S., Creighton, D. (2010). Load Forecasting and Neural Networks: A Prediction Interval-Based Perspective. In: Panigrahi, B.K., Abraham, A., Das, S. (eds) Computational Intelligence in Power Engineering. Studies in Computational Intelligence, vol 302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14013-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14013-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14012-9

  • Online ISBN: 978-3-642-14013-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics