Skip to main content

An AIS-ACO Hybrid Approach for Multi-Objective Distribution System Reconfiguration

  • Chapter
Computational Intelligence in Power Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 302))

  • 1581 Accesses

Abstract

This work proposes a hybrid algorithm based on artificial immune systems and ant colony optimization for distribution system reconfiguration, which is formulated as a multi-objective optimization problem. The algorithm maintains a population of candidate solutions called antibodies. The search space is explored by means of the hypermutation operator that perturbs existing antibodies to produce new ones. A table of pheromones is used to reinforce better edges during hypermutation. An added innovation is the use of the pheromones to obtain quick solutions to restore the distribution system under contingency situations. The hybrid approach has been successfully implemented on two test networks. The results obtained demonstrate the efficacy of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xu, W.: On the quadratic minimum spanning tree problem. In: Schaffer, J. (ed.) Proc. 3rd Int. Conf. Genetic Algorithms, pp. 141–148 (1995)

    Google Scholar 

  2. NP Hard, http://en.wikipedia.org/wiki/NP-hard

  3. Goldberg, D.E.: Genetic Algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc., Boston

    Google Scholar 

  4. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst., Man, and Cybernetics— Part B: Cybernetics 26(1), 29–41 (1996)

    Article  Google Scholar 

  5. Clerc, M., Kennedy, J.: The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans. on Evolutionary Computation 6, 58–73 (2002)

    Article  Google Scholar 

  6. Coello Coello, C.A.: A short tutorial on evolutionary multiobjective optimization. In: Procs. 1st Int. Conf. Evolutionary Multi-objective Optimization (2001)

    Google Scholar 

  7. Merlin, A., Back, H.: Search for Minimal-Loss Spanning Tree Configuration for an Urban Power Distribution System. In: Proceedings of the 5th Power System Conference (PSCC), Cambridge, pp. 1–18 (1975)

    Google Scholar 

  8. Baran, M.E., Wu, F.F.: Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing. IEEE Trans. on Power Delivery 4(2), 1401–1407 (1989)

    Article  Google Scholar 

  9. Aoki, K., Ichimori, T., Kanezashi, M.: Normal State Optimal Load Allocation in Distribution Systems. IEEE Trans. on Power Delivery 2(1), 147–155 (1987)

    Article  Google Scholar 

  10. Shirmohammadi, D., Hong, H.W.: Reconfiguration of Electric Distribution Networks for Resistive Line Loss Reduction. IEEE Trans. on Power Delivery 4(2), 1492–1498 (1989)

    Article  Google Scholar 

  11. Goswami, S.K., Basu, S.K.: A new Algorithm for the Reconfiguration of Distribution Feeders for Loss Minimization. IEEE Trans. on Power Delivery 7(3), 1484–1491 (1992)

    Article  Google Scholar 

  12. McDermott, T.E., Drezga, I., Broadwater, R.P.: A heuristic non-linear constructive method for distribution system reconfiguration. IEEE Trans. Power Syst. 14(2), 478–483 (1999)

    Article  Google Scholar 

  13. Morton, A.B., Mareels, I.M.Y.: An efficient brute-force solution the network reconfiguration problem. IEEE Trans. Power Del. 15(3), 996–1000 (2000)

    Article  Google Scholar 

  14. Civanlar, S., Grainger, J.J., Yin, H., Lee, S.S.H.: Distribution feeder reconfiguration for loss reduction. IEEE Trans. Power Del. 142(3), 1217–1223 (1988)

    Article  Google Scholar 

  15. Gomes, F.V., Carneiro Jr., S.: A new heuristic reconfiguration algorithm for large distribution systems. IEEE Trans. Power Syst. 20(3), 1373–1378 (2005)

    Article  Google Scholar 

  16. Ramos, E.R., Exposito, A.G.: Path-based distribution network modeling: application to reconfiguration for loss reduction. IEEE Trans. Power Syst. 20(2), 556–564 (2005)

    Article  Google Scholar 

  17. Schmidt, H.P., Kagan, N.: Fast reconfiguration of distribution systems considering loss minimization. IEEE Trans. Power Syst. 20(3), 1311–1319 (2005)

    Article  Google Scholar 

  18. Momoh, J.A., Yawo, A., Arunsi, C.: Reconfiguration of Distribution Feeders for Voltage Deviation Minimization with Feasibility of ANN. In: ICPSOP 1997 Conference Proceedings, January 14-17, pp. 378–383 (1997)

    Google Scholar 

  19. Choi, J.H., Kim, J.C.: Network Reconfiguration at the Power System with Dispersed Generations for Loss Reduction. In: IEEE Power Engineering Society Meeting, vol. 4, pp. 2363–2367 (2000)

    Google Scholar 

  20. Kagan, N., de Oliveira, C.C.B.: Fuzzy decision model for the reconfiguration of distribution networks using genetic algorithms. In: Proc. 13th Power Syst. Comput. Conf., Trondheim, Norway (1999)

    Google Scholar 

  21. Jeon, Y.J., Kim, J.C., Kim, J.O., Shin, J.R., Lee, K.Y.: An efficient simulated annealing algorithm for network reconfiguration in large-scale distribution sytems. IEEE Trans. Power Del. 17(4), 1070–1078 (2002)

    Article  Google Scholar 

  22. Delbem, A.C.B., de Carvalho, A.C.P.L.F., Bretas, N.G.: Main chain representation for evolutionary algorithms applied to distribution system reconfiguration. IEEE Trans. Power Syst. 20(1), 425–436 (2005)

    Article  Google Scholar 

  23. Chiou, J.P., Chang, C.-F., Su, C.-T.: Variable scaling hybrid differential evolution for solving network reconfiguration of distribution systems. IEEE Trans. Power Syst. 20(2), 668–674 (2005)

    Article  Google Scholar 

  24. Ahuja, A., Pahwa, A.: Using ant colony optimization for loss minimization in distribution networks. In: Proc. 37th North American Power Symposium, October 2005, pp. 470–474 (2005)

    Google Scholar 

  25. Jin, X., Zhao, J., Sun, Y., Li, K., Zhang, B.: Distribution network reconfiguration for load balancing using binary particle swarm optimization. In: Proc. Int. Conf. on Power Syst. Tech. (November 2004)

    Google Scholar 

  26. Roytelman, I., Melnik, V., Lee, S.S.H., Lugtu, R.L.: Multi-objective feeder reconfiguration by distribution management system. IEEE Trans. Power Syst. 11(2), 661–667 (1996)

    Article  Google Scholar 

  27. Hsiao, Y.-T.: Multi-objective evolution programming method for feeder reconfiguration. IEEE Trans. Power Syst. 19(1), 594–599 (2004)

    Article  Google Scholar 

  28. Das, I., Dennis, J.E.: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Structural Optimization 14, 63–69 (1997)

    Article  Google Scholar 

  29. Delbem, A.C.B., de Carvalho, A.C.P.L.F., Bretas, N.G.: Main chain representation for evolutionary algorithms applied to distribution system reconfiguration. IEEE Trans. Power Syst. 20(1), 425–436 (2005)

    Article  Google Scholar 

  30. Edgeworth, F.Y.: Mathematical Physics. P. Keagan, London (1881)

    Google Scholar 

  31. Pareto, V.: Cours D’Economie Politiqur, vols. I, II, F. Rouge, Lausanne (1896)

    Google Scholar 

  32. de Castro, L.N., Von Zuben, F.J.: Learning and Optimization using the Clonal selection principle. IEEE Trans. Evolutionary Computation 6(3), 239–251 (2002)

    Article  Google Scholar 

  33. Coello Coello, C.A., Cortes, N.C.: Solving multiobjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines 6, 163–190 (2005)

    Article  Google Scholar 

  34. Janeway, C.A., Travers, P., Walport, M., Capra, J.D.: Immunobiology: The Immune System In Health and Disease, 4th edn. Garland, New York (1999)

    Google Scholar 

  35. Burnet, F.M.: Clonal selection and after. In: Bell, G.I., Perelson, A.S., Pimbley Jr., G.H. (eds.) Theoretical Immunology, pp. 63–85. Marcel Dekker, New York (1978)

    Google Scholar 

  36. Hunt, J.E., Cooke, D.E.: An adaptative, distributed learning systems based on the immune system. In: Procs. IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 2494–2499 (1995)

    Google Scholar 

  37. Dasgupta, D. (ed.): Artificial Immune Systems and their Applications. Springer, Berlin (1999)

    MATH  Google Scholar 

  38. Forrest, S., Perelson, A.S.: Genetic algorithms and the immune system. In: Schwefel, H.-P., Manner, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 320–325. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  39. Smith, R.E., Forrest, S., Perelson, A.S.: Population diversity in an immune system model: Implications for genetic search. In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms, vol. 2, pp. 153–165. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  40. Yoo, J., Hajela, P.: Immune network simulations in multicriterion design. Structural Optimization 18, 85–94 (1999)

    Google Scholar 

  41. Hajela, P., Lee, J.: Constrained genetic search via schema adaptation. An immune network solution. Structural Optimization 12, 11–15 (1996)

    Google Scholar 

  42. Dorigo, M., Gambardella, L.M.: Ant colonies for the traveling salesman problem. BioSystems 43, 73–81 (1997)

    Article  Google Scholar 

  43. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst., Man, and Cybernetics— Part B: Cybernetics 26(1), 29–41 (1996)

    Article  Google Scholar 

  44. Bullnheimer, B., Hartl, R.F., Strauss, C.: Applying the ant system to the vehicle routing problem. In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 285–296. Kluwer, Dordrecht (1999)

    Google Scholar 

  45. Gambardella, L.M., Taillard, E., Agazzi, G.: MACS-VRPTW a multiple ant colony system for vehicle routing problems with time windows. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 63–76. McGraw-Hill, New York (1999)

    Google Scholar 

  46. Maniezzo, V., Colorni, A.: The ant system applied to the quadratic assignment problem. IEEE Trans. Knowledge and Data Engineering 11(5), 769–778 (1999)

    Article  Google Scholar 

  47. Bauer, A., Bullnheimer, B., Hartl, R.F., Strauss, C.: Minimizing total tardiness on a single machine using ant colony optimization. Central Eur. J. Oper. Res. 8(2), 125–141 (2000)

    MATH  MathSciNet  Google Scholar 

  48. Stützle, T.: An ant approach for the flow shop problem. In: Proc. 6th Eur. Congr. Intelligent Techniques and Soft Computing, Aachen, Germany, vol. 3, pp. 1560–1564 (1998)

    Google Scholar 

  49. Costa, D., Hertz, A.: Ants can color graphs. J. Oper. Res. Soc. 48, 295–305 (1997)

    MATH  Google Scholar 

  50. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. on Evolutionary Computation 2(4), 257–272 (1999)

    Article  Google Scholar 

  51. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computations 6 (2002)

    Google Scholar 

  52. Prim’s Algorithm, http://en.wikipedia.org/wiki/Prim’s_algorithm

  53. Zecchin, A.C., Simpson, A.R., Maier, H.R., Nixon, J.B.: Parametric study for an ant algorithm applied to water distribution system optimization. IEEE Trans. on Evolutionary Computation 9(2), 175–191 (2005)

    Article  Google Scholar 

  54. Ranjan, R., Venkatesh, B., Das, D.: Load-Flow Algorithm of Radial Distribution Networks Incorporating Composite Load Model. International Journal of Power and Energy Systems 23(1) (2003)

    Google Scholar 

  55. Knowles, J., Corne, D.: Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans. on Evolutionary Computation 7(2), 100–117 (2003)

    Article  Google Scholar 

  56. Hsu, Y.Y., Huang, H.M., Kuo, H.C., Peng, S.K., Chang, C.W., Chang, K.J., Yu, H.S., Chow, C.E., Kuo, R.T.: Distribution system service restoration using a heuristic search approach. IEEE Trans. on Power Delivery 7, 734–740 (1992)

    Article  Google Scholar 

  57. Chen, W.-H., Tsai, M.-S., Kuo, H.-L.: Distribution system restoration using the hybrid fuzzy-grey method. IEEE Trans. on Power Syst. 20(1) (February 2005)

    Google Scholar 

  58. Kruskal’s Algorithm, http://en.wikipedia.org/wiki/Kruskal’s_algorithm

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahuja, A., Das, S., Pahwa, A. (2010). An AIS-ACO Hybrid Approach for Multi-Objective Distribution System Reconfiguration. In: Panigrahi, B.K., Abraham, A., Das, S. (eds) Computational Intelligence in Power Engineering. Studies in Computational Intelligence, vol 302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14013-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14013-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14012-9

  • Online ISBN: 978-3-642-14013-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics