Skip to main content

Application of Evolutionary Optimization Techniques for PSS Tuning

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 302))

Abstract

In this chapter, bacteria foraging optimization (BFO) and chaotic ant swarm optimization (CASO) are individually considered to tune the parameters of both single-input and dual-input power system stabilizers (PSSs). Conventional PSS (CPSS) and the three dual-input IEEE PSSs (PSS2B, PSS3B, and PSS4B) are optimally tuned to obtain the optimal transient performances. A comparative performance study of these four variants of PSSs is also made. It is revealed by applying either BFO or CASO that the transient performance of dual-input PSS is better than single-input PSS. It is, further, explored that among dual-input PSSs, PSS3B offers superior transient performance. A comparison between the results of the BFO and that of genetic algorithm (GA) is conducted in this study. The comparison reveals that BFO is more effective than GA in finding the optimal transient performance. CASO explores the chaotic and self-organization behavior of ants in the foraging process. A novel concept, like craziness, is introduced in the CASO to achieve improved performance of the algorithm. For on-line, offnominal operating conditions Sugeno fuzzy logic (SFL) based approach is adopted. On real time measurements of system operating conditions, SFL adaptively and very fast yields on-line, off-nominal optimal stabilizer parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hariri, A., Malik, O.P.: A fuzzy logic based power system stabilizer with learning ability. IEEE Transaction on Energy Conversion 11(4), 721–727 (1996)

    Article  Google Scholar 

  2. Grigsby, L.L.: Electric power engineering handbook: power system stability and control. CRC Press, London (2007)

    Book  Google Scholar 

  3. Padiyar, K.R.: Analysis of subsynchronous resonance in power systems. Kluwer Academic Publishers, Boston (1999)

    Google Scholar 

  4. Pal, Bikash, Chaudhuri, Balarko (eds.): Robust control in power systems. Springer, USA (2005)

    Google Scholar 

  5. Padiyar, K.R.: Power system dynamics stability and control. BS Publications, India (2006)

    Google Scholar 

  6. Kundur, P.: Power system stability and control. TMH, India (2006)

    Google Scholar 

  7. El-Zonkoly, A.M.: Optimal tuning of power system stabilizers and AVR gains using particle swarm optimization. Expert Systems with Applications 31(3), 551–557 (2006)

    Article  Google Scholar 

  8. IEEE digital excitation task force of the equipment working group of the IEEE/PES excitation system subcommittee: Computer models for representation of digital-based excitation systems. IEEE Transaction on Energy Conversion 11(3), 607–615 (September 1996)

    Google Scholar 

  9. Sauer, P.W., Pai, M.A.: Power system dynamics and stability. Pearson Education, India (2003)

    Google Scholar 

  10. Radman, G., Smailli, Y.: Performance evaluation of PID power system stabilizer for synchronous generator. In: IEEE Conference, Southeastern (1988)

    Google Scholar 

  11. Hopkins, W.E., Medanic, J., Perkins, W.R.: Output feedback pole placement in the design of suboptimal linear quadratic regulators. International Journal of Control 34(3), 593–612 (1981)

    Article  MATH  Google Scholar 

  12. Choic, S.S., Lim, M.: Design of wide range power system stabilizers via pole placement technique. Computers and Electrical Engineering 9(2), 103–110 (1982)

    Article  Google Scholar 

  13. Hsu, Yuan-Yin, Chen, Chao-Rong: Tuning of power system stabilizers using an artificial neural network. IEEE Transaction on Energy Conversion 6(4), 612–619 (1991)

    Article  Google Scholar 

  14. Soos, A., Malik, O.P.: An H2 optimal adaptive power system stabilizer. IEEE Transaction on Energy Conversion 17(1), 143–149 (2002)

    Article  Google Scholar 

  15. Hosseinzadeh, N., Kalam, A.: A direct adaptive fuzzy power system stabilizer. IEEE Transaction on Energy Conversion 14(4), 1564–1571 (1999)

    Article  Google Scholar 

  16. Abido, M.A.: Parameter optimization of multi-machine power system stabilizers using genetic local search. International Journal Electrical Power and Energy Systems 23(8), 785–794 (2001)

    Article  Google Scholar 

  17. Abido, M.A.: Robust design of multi-machine power system stabilizers using simulated annealing. IEEE Transaction on Energy Conversion 15(3), 297–304 (2000)

    Article  Google Scholar 

  18. Huang, T.L., Chang, C.H., Lee, J.L., Wang, H.M.: Design of sliding mode power system stabilizer via genetic algorithm. In: IEEE International Symposium Computational Intelligence in Robotics and Automation (2003)

    Google Scholar 

  19. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Pearson Education, India (1989)

    MATH  Google Scholar 

  20. Ghoshal, S.P., Goswami, S.K.: Application of GA based optimal integral gains in fuzzy based active power frequency control of non-reheat and reheat thermal generating systems. Electric Power Systems Research 67(2), 79–88 (2003)

    Article  Google Scholar 

  21. Ghoshal, S.P.: Application of GA/GA-SA based fuzzy automatic generation control of a multi-area thermal generating system. Electric Power Systems Research 70(2), 115–128 (2004)

    Article  MathSciNet  Google Scholar 

  22. Passino, K.M.: Biomimicry of bacteria foraging for distributed automation and control. IEEE Control System Magazine 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  23. Cai, Jiejin, et al.: Chaotic ant swarm optimization to economic dispatch. Electric Power Systems Research 77(10), 1373–1380 (2007)

    Article  Google Scholar 

  24. Mukherjee, V., Ghoshal, S.P.: Intelligent particle swarm optimized fuzzy PID controller for AVR system. Electric Power Systems Research 77(12), 1689–1698 (2007)

    Article  Google Scholar 

  25. Mukherjee, V., Ghoshal, S.P.: Comparison of intelligent fuzzy based AGC coordinated PID controlled and PSS controlled AVR system. International Journal Electrical Power and Energy Systems 29(9), 679–689 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ghoshal, S.P., Chatterjee, A., Mukherjee, V. (2010). Application of Evolutionary Optimization Techniques for PSS Tuning. In: Panigrahi, B.K., Abraham, A., Das, S. (eds) Computational Intelligence in Power Engineering. Studies in Computational Intelligence, vol 302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14013-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14013-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14012-9

  • Online ISBN: 978-3-642-14013-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics