Skip to main content

Fractional Dynamics of Media with Long-Range Interaction

  • Chapter

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

Abstract

Dynamics with long-range interaction has been the subject of continuing interest in different areas of science. The long-range interactions have been studied in discrete systems as well as in their continuous analogues. Models of classical spins with long-range interactions were studied in Refs. (Dyson, 1969a, b, 1971; Joyce, 1969; Frohlich et al., 1978; Nakano et al., 1994a,b,c, 1995; Sousa, 2005). An infinite 1-dimensional Ising model with long-range interactions was considered by Dyson (Dyson, 1969a,18b, 1971). The d-dimensional classical Heisenberg model with long-range interaction was described in Refs. (Joyce, 1969; Frohlich et al., 1978), and their quantum generalization can be found in Refs. (Nakano et al., 1994a, b, c). Kinks in the Frenkel-Kontorova model with long-range interparticle interactions were studied in Ref. (Braun et al., 1990). Solitons in a 1-dimensionallattice with the long-range Lennard-Jones-type interaction were considered in Ref. (Ishimori, 1982). The properties of time periodic spatially localized solutions (breathers) on discrete chains in the presence of algebraically decaying interactions were considered in Refs. (Flach, 1998; Gorbach and Flach, 2005). Energy and decay properties of discrete breathers in systems with long-range interactions were also studied in the framework of the Klein-Gordon equation (Braun and Kivshar, 1998; Flach, 1998; Baesens and MacKay, 1999; Braun and Kivshar, 2004), and discrete nonlinear Schrodinger equations (Gaididei et al., 1997,995; Mingaleev et al., 1998,2000; Rasmussen et al., 1998). Synchronization of chaotic systems with long-range interactions was discussed in (Tessone et al., 2006).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • O.P. Agrawal, 2002, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics, 29, 145–155.

    Article  MathSciNet  MATH  Google Scholar 

  • G.L. Alfimov, V.M. Eleonsky, L.M. Lerman, 1998, Solitary wave solutions of nonlocal sine-Gordon equations, Chaos, 8, 257–271.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • G.L. Alfimov, V.G. Korolev, 1998, On multikink states described by the nonlocal sine-Gordon equation, Physics Letters A, 246, 429–435.

    Article  ADS  Google Scholar 

  • G. Alfimov, T. Pierantozzi, L. Vazquez, 2004, Numerical study of a fractional sine-Gordon equation, in: Fractional differentiation and its applications, A. Le Mehaute, J.A. Tenreiro Machado, L.C. Trigeassou, J. Sabatier (Eds.), Proceedings of the IFAC-FDA Workshop, Bordeaux, France, July 2004, 153–162.

    Google Scholar 

  • R. Bachelard, C. Chandre, D. Fanelli, X. Leoncini, S. Ruffo, 2008, Abundance of regular orbits and nonequilibrium phase transitions in the thermodynamic limit for long-range systems, Physics Review Letters, 101, 260603.

    Article  ADS  Google Scholar 

  • C. Baesens, R.S. MacKay, 1999, Algebraic localisation of linear response in networks with algebraically decaying interaction, and application to discrete breathers in dipole-dipole systems, Helvetica Physica Acta, 72, 23–32.

    MathSciNet  MATH  Google Scholar 

  • J. Barre, F. Bouchet, T. Dauxois, S. Ruffo, 2005, Large deviation techniques applied to systems with long-range interactions, Journal of Statistical Physics, 119, 677–713.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • H. Bateman, A. Erdelyi, 1953, Higher Transcendental Functions, Vol.1, McGraw-Hill, New York.

    Google Scholar 

  • T.L. Van Den Berg, D. Fanelli, X. Leoncini, 2009, Stationary states and fractional dynamics in systems with long range interactions, E-print: arXiv:0912.3060.

    Google Scholar 

  • M.V. Berry, 1996, Quantum fractals in boxes, Journal of Physics A, 29, 6617–6629.

    Article  MATH  Google Scholar 

  • P. Biler, T. Funaki, W.A. Woyczynski, 1998, Fractal Burger equation, Journal of Differential Equations, 148, 9–46.

    Article  MathSciNet  MATH  Google Scholar 

  • O.M. Braun, Y.S. Kivshar, 1998, Nonlinear dynamics of the Frenkel-Kontorova model, Physics Reports, 306, 2–108.

    Article  MathSciNet  ADS  Google Scholar 

  • O.M. Braun, Y.S. Kivshar, 2004, The Frenkel-kontorovaModel: Concepts, Methods, and Applications, Springer, Belin, New York.

    Google Scholar 

  • O.M. Braun, Y.S. Kivshar, I.I. Zelenskaya, 1990, Kinks in the Frenkel-Kontorova model with long-range interparticle interactions, Physical Review B, 41, 7118–7138.

    Article  ADS  Google Scholar 

  • J. Burgers, 1974, The Nonlinear Diffusion Equation, Reidel, Dordrecht, Amsterdam.

    MATH  Google Scholar 

  • A. Campa, T. Dauxois, S. Ruffo, 2009, Statistical mechanics and dynamics of solvable models with long-range interactions, Physics Reports, 480, 57–159.

    Article  MathSciNet  ADS  Google Scholar 

  • F.J. Dyson, 1969a, Existence of a phase-transition in a one-dimensional Ising ferro-magnet, Communication in Mathematical Physics, 12, 91–107.

    Article  MathSciNet  ADS  Google Scholar 

  • F.J. Dyson, 1969b, Non-existence of spontaneous magnetization in a one-dimensional Ising ferromagnet, Communication in Mathematical Physics, 12, 212–215.

    Article  MathSciNet  ADS  Google Scholar 

  • F.J. Dyson, 1971, An Ising ferromagnet with discontinuous long-range order, Communication in Mathematical Physics, 21, 269–283.

    Article  MathSciNet  ADS  Google Scholar 

  • A. Erdelyi, W. Magnus, F. Oberhettinger, EG. Tricomi, 1981, Higher Transcendental Functions, Vol.1, Krieger, Melbbourne, Florida, New York.

    Google Scholar 

  • J. Feder, 1988, Fractals, Plenum Press, New York, London.

    MATH  Google Scholar 

  • R.A. Fisher, 1937, The wave of advance of advantageous genes, Ann Eugen London, 1, 355–369.

    Article  Google Scholar 

  • S. Flach, 1998, Breathers on lattices with long-range interaction, Physical Review E, 58, R4116–R4119.

    Article  ADS  Google Scholar 

  • S. Flach, C.R. Willis, 1998, Discrete breathers, Physics Reports, 295, 181–264.

    Article  MathSciNet  ADS  Google Scholar 

  • J. Frohlich, R. Israel, E.H. Lieb, B. Simon, 1978, Phase transitions and reflection positivity I. General theory and long-range lattice model, Communication in Mathematical Physics, 62, 1–34.

    Article  MathSciNet  ADS  Google Scholar 

  • V. Gafiychuk, B. Datsko, V. Meleshko, D. Blackmore, 2009, Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations, Chaos, Soli-tons and Fractals, 41, 1095–1104.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Yu.B. Gaididei, S.F. Mingaleev, P.L. Christiansen, K.O. Rasmussen, 1997, Effects of nonlocal dispersive interactions on self-trapping excitations, Physical Review E, 55, 6141–6150.

    Article  ADS  Google Scholar 

  • Yu. Gaididei, N. Flytzanis, A. Neuper, F.G. Mertens, 1995, Effect of nonlocal interactions on soliton dynamics in anharmonic lattices, Physical Review Letters, 75, 2240–2243.

    Article  ADS  Google Scholar 

  • B.H. Gilding, R. Kersner, 2004, Travelling Waves in Nonlinear Diffusion Convection Reaction, Birkhauser Verlag, Basel.

    Book  MATH  Google Scholar 

  • A.V. Gorbach, S. Flach, 2005, Compactlike discrete breathers in systems with nonlinear and nonlocal dispersive terms, Physical Review E, 72, 056607.

    Article  MathSciNet  ADS  Google Scholar 

  • R. Gorenflo, F. Mainardi, 1997, Fractional calculus: integral and differential equations of fractional order, in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri, F. Mainardi (Eds.), Springer, New York, 223–276; and E-print: arxiv:0805.3823.

    Google Scholar 

  • R. Gorenflo, Y. Luchko, F. Mainardi, 2000, Wright functions as scale-invariant solutions of the diffusion-wave equation, Journal of Computational and Applied Mathematics, 118, 175–191.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • G.H. Hardy, 1916, Weierstrass’s non-differentiable function, Transactions of the American Mathematical Society, 17, 301–325.

    MathSciNet  MATH  Google Scholar 

  • K.E. van Holde, 1998, Principles of Physical Biochemistry, Prentice Hall, New Jersey.

    Google Scholar 

  • Y. Ishimori, 1982, Solitons in a one-dimensional Lennard-Jones lattice, Progress of Theoretical Physics, 68, 402–410.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • G.S. Joyce, 1969, Absence of ferromagnetism or antiferromagnetismin the isotropic Heisenberg model with long-range interactions, Journal of Physics C, 2, 1531–1533.

    Article  Google Scholar 

  • B.B. Kadomtsev, 1988, Collective Phenomena in Plasmas, Pergamon, New York. Section 2.5.5 and Section 3.4.4. Translated from Russian: 2nd ed., Nauka, Moscow, 1988.

    Google Scholar 

  • A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.

    MATH  Google Scholar 

  • C. Kittel, 2004, Introduction to Solid State Physics, 8th ed., Wiley, New York.

    Google Scholar 

  • A. Kolinski, J. Skolnick, 2004, Reduced models of proteins and their applications, Polymer, 45, 511–524.

    Article  Google Scholar 

  • A.I. Kolmogorov, I. Petrovsky, N. Piscounov, 1937, Etude de 1’equation de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique, Moscow University Bulletin, Ser. International Sect. A, 1, 1–25.

    Google Scholar 

  • N. Korabel, G.M. Zaslavsky, V.E. Tarasov, 2007, Coupled oscillators with power-law interaction and their fractional dynamics analogues, Communications in Nonlinear Science and Numerical Simulation, 12, 1405–1417.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • N. Korabel, G.M. Zaslavsky, 2007, Transition to chaos in discrete nonlinear Schrödinger equation with long-range interaction, Physica A, 378, 223–237.

    Article  ADS  Google Scholar 

  • H. Kröger, 2000, Fractal geometry in quantum mechanics, field theory and spin systems, Physics Reports, 323, 81–181.

    Article  MathSciNet  Google Scholar 

  • N. Laskin, G.M. Zaslavsky, 2006, Nonlinear fractional dynamics on a lattice with long-range interactions, Physica A, 368, 38–54.

    Article  ADS  Google Scholar 

  • M.A. Leontovich, 1944, Izvestya Akademii Nauk SSSR. Seria Fizika, 8, 16.

    Google Scholar 

  • L. Lewin, 1981, Poly logarithms and Associated Functions, North-Holland, New York.

    Google Scholar 

  • J. Lighthill, 1978, Waves in Fluid, Cambridge University Press, Cambridge. Section 3.7.

    Google Scholar 

  • Y. Luke, 1969, The Special Functions and Their Approximations, Academic Press, New York. Vol.1. Chapter 6.

    MATH  Google Scholar 

  • F. Mainardi, 1996, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons and Fractals, 7, 1461–1477.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • F. Mainardi, Yu. Luchko, G. Pagnini, 2001, The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus and Applied Analysis, 4, 153–192.

    MathSciNet  MATH  Google Scholar 

  • B. Mandelbrot, 1983, The Fractal Geometry of Nature, Freeman, New York.

    Google Scholar 

  • V.P. Maslov, 1973, Operator method, Nauka, Moscow. In Russian. Sect. 1.8.

    Google Scholar 

  • T.M. Michelitsch, G.A. Maugin, F.C.G.A. Nicolleau, A.F. Nowakowski, S. Derogar, 2009, Dispersion relations and wave operators in self-similar quasicontinuous linear chains, Physical Review E, 80, 011135.

    Article  MathSciNet  ADS  Google Scholar 

  • A.V. Milovanov, J.J. Rasmussen, 2005, Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical phenomena in complex media, Physics Letters A, 337, 75–80.

    Article  ADS  MATH  Google Scholar 

  • S.F. Mingaleev, Y.B. Gaididei, F.G. Mertens, 1998, Solitons in anharmonic chains with power-law long-range interactions, Physical Review E, 58, 3833–3842.

    Article  ADS  Google Scholar 

  • S.F. Mingaleev, Y.B. Gaididei, F.G. Mertens, 2000, Solitons in anharmonic chains with ultra-long-range interatomic interactions, Physical Review E, 61, R1044–R1047.

    Article  ADS  Google Scholar 

  • P. Miskinis, 2005, Weakly nonlocal supersymmetric KdV hierarchy, Nonlinear Analysis: Modelling and Control, 10, 343–348.

    MathSciNet  MATH  Google Scholar 

  • S. Momani, 2005, An explicit and numerical solutions of the fractional KdV equation, Mathematics and Computers in Simulation, 70, 110–1118.

    MathSciNet  MATH  Google Scholar 

  • H. Nakano, M. Takahashi, 1994a, Quantum Heisenberg chain with long-range ferromagnetic interactions at low temperatures, Journal of the Physical Society of Japan, 63, 926–933; and E-print: cond-mat/9311034.

    Article  ADS  Google Scholar 

  • H. Nakano, M. Takahashi, 1994b, Quantum Heisenberg model with long-range ferromagnetic interactions, Physical Review B, 50, 10331–10334.

    Article  ADS  Google Scholar 

  • H. Nakano, M. Takahashi, 1994c, Quantum Heisenberg ferromagnets with long-range interactions, Journal of the Physical Society of Japan, 63, 4256–4257.

    Article  ADS  Google Scholar 

  • H. Nakano, M. Takahashi, 1995, Magnetic properties of quantum Heisenberg ferromagnets with long-range interactions, Physical Review B, 52, 6606–6610.

    Article  ADS  Google Scholar 

  • A.C. Newell, J.A. Whitehead, 1969, Finite bandwidth, finite amplitude convection, Journal of Fluid Mechanics, 38, 279–303.

    Article  ADS  MATH  Google Scholar 

  • G.R. Newkome, P. Wang, C.N. Moorefield, T.J. Cho, P.P. Mohapatra, S. Li, S.H. Hwang, O. Lukoyanova, L. Echegoyen, J.A. Palagallo, V. Iancu, S.W. Hla, 2006, Nanoassembly of a fractal polymer: A molecular “Sierpinski hexagonal gasket”, Science, 312, 1782–1785.

    Article  MathSciNet  ADS  Google Scholar 

  • V.L. Pokrovsky, A. Virosztek, 1983, Long-range interactions in commensurate-incommensurate phase transition, Journal of Physics C, 16, 4513–4525.

    Article  Google Scholar 

  • A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, 1986, Integrals and Series, Vol.1: Elementary Functions, Gordon and Breach, New York.

    MATH  Google Scholar 

  • The RCSB Protein Data Bank (PDB), 2010: http://www.rcsb.org/pdb/home/home.do

    Google Scholar 

  • K.O. Rasmussen, P.L. Christiansen, M. Johansson, Yu.B. Gaididei, S.F. Mingaleev, 1998, Localized excitations in discrete nonlinear Schröedinger systems: Effects of nonlocal dispersive interactions and noise, Physica D, 113, 134–151.

    Article  ADS  MATH  Google Scholar 

  • R.Z. Sagdeev, D.A. Usikov, G.M. Zaslavsky, 1988, Nonlinear Physics. From the Pendulum to Turbulence and Chaos, Harwood Academic, New York.

    MATH  Google Scholar 

  • A.I. Saichev, G.M. Zaslavsky, 1997, Fractional kinetic equations: solutions and applications, Chaos, 7, 753–764.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • S.G. Samko, A.A. Kilbas, O.I. Marichev, 1993, Integrals and Derivatives of Fractional Order and Applications, Nauka i Tehnika, Minsk, 1987, in Russian; and Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.

    Google Scholar 

  • L.A. Segel, 1969, Distant side-walls cause slow amplitude modulation of cellular convection, Journal of Fluid Mechanics, 38, 203–224.

    Article  ADS  MATH  Google Scholar 

  • J.R. Sousa, 2005, Phase diagram in the quantum XY model with long-range interactions, European Physical Journal B, 43, 93–96.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, 2006a, Continuous limit of discrete systems with long-range interaction, Journal of Physics A, 39, 14895–14910.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, 2006b, Map of discrete system into continuous, Journal of Mathematical Physics, 47, 092901.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, 2006c, Psi-series solution of fractional Ginzburg-Landau equation, Journal of Physics A, 39, 8395–8407.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, 2008, Chains with fractal dispersion law, Journal of Physics A, 41, 035101.

    Article  MathSciNet  Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, 2005, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354, 249–261.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, 2006a, Fractional dynamics of coupled oscillators with long-range interaction, Chaos, 16, 023110.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, 2006b, Fractional dynamics of systems with long-range interaction, Communications in Nonlinear Science and Numerical Simulation, 11, 885–898.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, 2007a, Fractional dynamics of systems with long-range space interaction and temporal memory, Physica A, 383, 291–308.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, 2007b, Conservation laws and Hamiltonian’s equations for systems with long-range interaction and memory, Communications in Nonlinear Science and Numerical Simulation 13, 1860–1878.

    Article  MathSciNet  ADS  Google Scholar 

  • C.J. Tessone, M. Cencini, A. Torcini, 2006, Synchronization of extended chaotic systems with long-range interactions: An analogy to Levy-flight spreading of epidemics, Physical Review Letters, 97, 224101.

    Article  ADS  Google Scholar 

  • A.M. Turing, 1952, The chemical basis of morphogenesis, The Philosophical Transactions of the Royal Society B (London), 237, 37–68.

    Article  ADS  Google Scholar 

  • V.V. Uchaikin, 2003a, Self-similar anomalous diffusion and Levy-stable laws, Physics-Uspekhi, 46, 821–849.

    Article  ADS  Google Scholar 

  • V.V. Uchaikin, 2003b, Anomalous diffusion and fractional stable distributions, Journal of Experimental and Theoretical Physics, 97, 810–825.

    Article  ADS  Google Scholar 

  • F. Weierstrass, 1895, Uber kontinuierliche funktionen eines reellen arguments, die fur keinen wert des letzteren einen bestimmten differential quotienten besitzen, In Mathematische Werke II, 71–74. Mayer-Muller, Berlin.

    Google Scholar 

  • H. Weitzner, G.M. Zaslavsky, 2003, Some applications of fractional derivatives, Communications in Nonlinear Science and Numerical Simulation, 8, 273–281.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • D. Wojcik, I. Bialynicki-Birula, K. Zyczkowski, 2000, Time evolution of quantum fractals, Physical Review Letters, 85, 5022–5026.

    Article  ADS  Google Scholar 

  • G.M. Zaslavsky, M. Edelman, V.E. Tarasov, 2007, Dynamics of the chain of oscillators with long-range interaction: from synchronization to chaos, Chaos, 17, 043124.

    Article  MathSciNet  ADS  Google Scholar 

  • Y.B. Zeldovich, D.A. Frank-Kamenetsky, 1938, Acta Physicochimica URSS, 9, 341–350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarasov, V.E. (2010). Fractional Dynamics of Media with Long-Range Interaction. In: Fractional Dynamics. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14003-7_8

Download citation

Publish with us

Policies and ethics