Skip to main content

Fractal Rigid Body Dynamics

  • Chapter
Fractional Dynamics

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

  • 3442 Accesses

Abstract

A rigid body is an idealization of a solid body of finite size in which deformation is neglected. Rigid bodies are characterized as being non-deformable, as opposed to deformable bodies. The distance between any two given points of a rigid body remains constant in time regardless of external forces exerted on it. We can use the property that the body is rigid, if all its particles maintain the same distance relative to each other. Therefore it is sufficient to describe the position of at least three non-collinear particles. The rigid body dynamics is the study of the motion of rigid bodies. Unlike point particles, which move only in three degrees of freedom (translation in three directions), rigid bodies occupy a region of space and have spatial properties. The main properties of a rigid body are a center of mass and moments of inertia, that characterize motion in six degrees of freedom such as translations in three directions and rotations in three directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Carpinteri, P. Cornetti, 2002, A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos, Solitons and Fractals, 13, 85–94.

    Article  ADS  MATH  Google Scholar 

  • A. Carpinteri, F. Mainardi (Eds.), 1997, Fractals and Fractional Calculus in Continuum Mechanics, Springer, New York.

    MATH  Google Scholar 

  • R.M. Christensen, 2005, Mechanics of Composite Materials, Dover, New York.

    Google Scholar 

  • H. Goldstein, C.P. Poole, J.L. Safko, 2002, Classical Mechanics, 3nd ed., Addison-Wesley, San Fransisco.

    Google Scholar 

  • V.S. Ivanova, A.S. Balankin, I.Zh. Bunin, A.A. Oksogoev, 1994, Synergetics and Fractals in Material Sciences, Nauka, Moscow. In Russian.

    Google Scholar 

  • A.A. Kubas, H.M. Srivastava, J.J. Trujillo, 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.

    Google Scholar 

  • M.I. Kulak, 2002, Fractal Mechanics of Materials, Visheishaya Shkola, Minsk. In Russian.

    Google Scholar 

  • F. Mainardi, 2010, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific Publishing, Singapore.

    Book  MATH  Google Scholar 

  • Y. Park, 2000, On fractal theory for porous media, Journal of Statistical Physics, 101, 987–998.

    MathSciNet  MATH  Google Scholar 

  • F.Y. Ren, J.R. Liang, X.T. Wang, W.Y. Qiu, 2003, Integrals and derivatives on net fractals, Chaos, Solitons and Fractals, 16, 107–117.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • S.G. Samko, A.A. Kubas, O.I. Marichev, 1993, Integrals and Derivatives of Fractional Order and Applications, Nauka i Tehnika, Minsk, 1987, in Russian; andand Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.

    Google Scholar 

  • Special Issue, 1997, Application of Fractals in Material Science and Engineering, Chaos, Solitons and Fractals, 8, 135–301.

    Article  Google Scholar 

  • V.E. Tarasov, 2004, Fractional generalization of Liouville equations, Chaos 14, 123–127.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, 2005a, Continuous medium model for fractal media, Physics Letters A, 336, 161–114.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, 2005b, Fractional hydrodynamic equations for fractal media, Annals of Physics, 318, 286–307.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2005c, Fractional systems and fractional Bogoliubov hierarchy equations, Physical Review E, 71, 011102.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, 2005d, Dynamics of fractal solid, International Journal of Modern Physics B, 19, 4103–4114.

    Article  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2005e, Possible experimental test of continuous medium model for fractal media, Physics Letters A, 341, 467–472.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, 2005f, Wave equation for fractal solid string, Modern Physics Letters B, 19, 721–728.

    Article  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2005g, Fractional Liouville and BBGKI equations, Journal of Physics: Conference Series, 7, 17–33.

    Article  ADS  Google Scholar 

  • K. Tsujii, 2008, Fractal materials and their functional properties, Polymer Journal, 40, 785–799.

    Article  Google Scholar 

  • V.V. Uchaikin, 2008, Method of Fractional Derivatives, Artishok, Ulyanovsk. In Russian.

    Google Scholar 

  • G.V. Vostovsky, A.G. Kolmakov, I.Zh. Bunin, 2001, Introduction to Multifractal Parametrization of Material Structure, RHD, Moscow. In Russian.

    Google Scholar 

  • I.V. Zolotuhin, Yu.E. Kalinin, V.I. Loginova, 2005, Solid fractal structures, International Scientific Journal for Alternative Energy and Ecology, 9, 56–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarasov, V.E. (2010). Fractal Rigid Body Dynamics. In: Fractional Dynamics. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14003-7_3

Download citation

Publish with us

Policies and ethics