Skip to main content

Fractional Dynamics and Discrete Maps with Memory

  • Chapter

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

Abstract

The study of nonlinear dynamics in terms of discrete maps is a very important step m understanding the qualitative behavior of physical systems described by differential equations (Sagdeev et al., 1988; Zaslavsky, 2005; Chirikov, 1979; Schuster and Just, 2005; Collet and Eckman, 1980). Discrete maps lead to a much simpler formalism, which is particularly useful in computer simulations. The derivatives of non-integer orders (Samko et al., 1993; Miller and Ross, 1993; Podlubny, 1999; Kilbas et al., 2006) are a natural generalization of the ordinary differentiation of integer order. Note that the continuous limit of discrete systems with power-law long-range interactions gives differential equations with derivatives of non-integer orders with respect to coordinates (see for example, (Tarasov and Zaslavsky, 2006; Tarasov, 2006a,b)). Fractional differentiation with respect to time is characterized by long-term memory effects that correspond to intrinsic dissipative processes m the physical systems. The memory effects to discrete maps mean that the present state evolution depends on all past states. The discrete maps with memory were considered, for example, in the papers (Fulinski and Kleczkowski, 1987; Fick et al., 1981; Giona, 1991; Hartwich and Fick, 1993; Gallas, 1993; Stainslavsky, 2006) and (Tarasov, 2008d, 2009a,b; Edelman and Tarasov, 2009). The interesting question is a connection of fractional equations of motion and the discrete maps with memory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • V.S. Anischenko, 1990, Complex Oscillations in Simple Systems, Nauka, Moscow. In Russian

    Google Scholar 

  • V. Arnold, 1965, Small denominators. I: On the mappings of the circumference onto itself, American Mathematical Society Translations, 2, 213–284; and Izvestiya Akademii Nauk SSSR, Ser. Matem., 25 (1961) 21–86. In Russian.

    Google Scholar 

  • H. Bateman, A. Erdelyi, 1953, Higher Transcendental Functions, Vol.1, McGraw-Hill, New York.

    Google Scholar 

  • M. Caputo, 1967, Linear models of dissipation whose Q is almost frequency independent, Part II, Geophysical Journal of the Royal Astronomical Society, 13, 529–539

    Article  Google Scholar 

  • M. Caputo, 1969, Elasticita e Dissipazione, Zanichelli, Bologna. In Italian.

    Google Scholar 

  • M. Caputo, F. Mainardi, 1971, A new dissipation model based on memory mechanism, Pure and Applied Geophysics, 91, 134–147.

    Article  ADS  Google Scholar 

  • B.Y. Chirikov, 1979, A universal instability of many dimensional oscillator systems, Physics Reports, 52, 263–379.

    Article  MathSciNet  ADS  Google Scholar 

  • P. Collet, J.P. Eckman, 1980, Iterated Maps on the Interval as Dynamical System, Birkhauser, Basel.

    Google Scholar 

  • M. Edelman, V.E. Tarasov, 2009, Fractional standard map, Physics Letters A, 374, 279–285.

    Article  MathSciNet  ADS  Google Scholar 

  • E. Fick, M. Fick, G. Hausmann, 1991, Logistic equation with memory, Physical Review A, 44, 2469–2473.

    Article  MathSciNet  ADS  Google Scholar 

  • A. Fulinski, A.S. Kleczkowski, 1987, Nonlinear maps with memory, Physica Scripta, 35, 119–122.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • J.A.C. Gallas, 1993, Simulating memory effects With discrete dynamical systems, Physica A, 195, 417–430; and Erratum, Physica A, 198, 339.

    Article  MathSciNet  ADS  Google Scholar 

  • M. Giona, 1991, Dynamics and relaxation properties of complex systems with memory, Nonlinearity, 4, 991–925.

    Article  MathSciNet  Google Scholar 

  • R. Gorenflo, F. Mainardi, 1997, Fractional calculus: Integral and differential equations of fractional order, in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri, F. Mainardi, (Eds.), Springer, New York, 223–276; and E-print: arxiv:0805.3823.

    Google Scholar 

  • K. Hartwich, E. Fick, 1993, Hopf bifurcations in the logistic map with oscillating memory, Physics Letters A, 177, 305–310.

    Article  MathSciNet  ADS  Google Scholar 

  • M. Hénon, 1976, A two-dimensional mapping with a strange attractor, Communication in Mathematical Physics, 50, 69–77.

    Article  ADS  MATH  Google Scholar 

  • A.K. Jonscher, 1996, Universal Relaxation Law, Chelsea Dielectrics Press, London.

    Google Scholar 

  • A.K. Jonscher, 1999, Dielectric relaxation in solids, Journal of Physics D, 32, R57–R70.

    Article  ADS  Google Scholar 

  • A.A. Kilbas, S.A. Marzan, 2004, The Cauchy problem for differential equations with fractional Caputo derivative, Doklady Mathematics, 70, 841–845; Translated from Doklady Akademii Nauk, 399, 7–11.

    Google Scholar 

  • A.A. Kilbas, S.A. Marzan, 2005, Nonhnear differential equations With the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations, 41, 84–89; Translated from Differentsialnye Uravneniya, 41, 82–86.

    Article  MathSciNet  MATH  Google Scholar 

  • A.A. Kilbas, B. Bonilla, J.J. Trujillo, 2000a, Nonhnear differential equations of fractional order is space of integrable functions, Doklady Mathematics, 62, 222–226; Translated from Doklady Akademii Nauk, 374, 445–449. In Russian.

    Google Scholar 

  • A.A. Kilbas, B. Bonilla, J.J. Trujillo, 2000b, Existence and uniqueness theorems for nonlinear fractional differential equations, Demonstratio Mathematica, 33, 583–602.

    MathSciNet  MATH  Google Scholar 

  • A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.

    MATH  Google Scholar 

  • K.S. Miller, B. Ross, 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York.

    MATH  Google Scholar 

  • Yu.I. Neimark, P.S. Landa, 1992, Stochastic and Chaotic Oscillations, Kluwer Academic, Dordrecht and Boston, 500p.; Translated from Russian: Nauka, Moscow, 1987.

    Book  MATH  Google Scholar 

  • I. Podlubny, 1999, Fractional Differential Equations, Academic Press, New York.

    MATH  Google Scholar 

  • D.A. Russell, J.D. Hanson, E. Ott, 1980, Dimension of strange attractors, Physical Review Letters, 45, 1175–1178.

    Article  MathSciNet  ADS  Google Scholar 

  • R.Z. Sagdeev, D.A. Usikov, G.M. Zaslavsky, 1988, Nonlinear Physics. From the Pendulum to Turbulence and Chaos, Harwood Academic, New York.

    MATH  Google Scholar 

  • S.G. Samko, AA Kilbas, O.I. Marichev, 1993, Integrals and Derivatives of Fractional Order and Applications, Nauka i Tehnika, Minsk, 1987, in Russian; and Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.

    Google Scholar 

  • G. Schmidt, B.W. Wang, 1985, Dissipative standards map, Physical Review A, 32, 2994–2999.

    Article  ADS  Google Scholar 

  • H.G. Schuster, W. Just, 2005, Deterministic Chaos: An Introduction, 4th ed., Wiley-VCH, Weinheim, 2005.

    Book  MATH  Google Scholar 

  • A.A. Stamslavsky, 2006, Long-term memory contribution as applied to the motion of discrete dynamical system, Chaos, 16, 043105.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, 2006a, Continuous limit of discrete systems with long-range interaction, Journal of Physics A, 39, 14895–14910.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, 2006b, Map of discrete system into continuous, Journal of Mathematical Physics, 47, 092901.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, 2008a, Fractional equations of Curie-von Schweidler and Gauss laws, Journal of Physics: Condensed Matter, 20, 145212.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, 2008b, Universal electromagnetic waves in dielectric, Journal of Physics A, 20, 175223.

    ADS  Google Scholar 

  • V.E. Tarasov, 2008c, Fractional vector calculus and fractional Maxwell’s equations, Annals of Physics, 323, 2756–2778.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, 2008d, Fractional equations of kicked systems and discrete maps, Journal of Physics A, 41, 435101.

    Article  MathSciNet  Google Scholar 

  • V.E. Tarasov, 2009a, Differential equations with fractional derivative and universal map with memory, Journal of Physics A, 42, 465102.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, 2009b, Discrete map with memory from fractional differential equation of arbitrary positive order, Journal of Mathematical Physics, 50, 122703.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, 2010, Fractional Zaslavsky and Hénon discrete maps, Chapter 1, in Long-range Interaction, Stochasticity and Fractional Dynamics, A.C.J. Luo, V. Afrmmovich, (Eds.), HEP and Springer, 2010.

    Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, 2006, Fractional dynamics of coupled oscillators with long-range interaction, Chaos, 16, 023110.

    Article  MathSciNet  ADS  Google Scholar 

  • G.M. Zaslavsky, 1978, Simplest case of a strange attractor, Physics Letters A, 69, 145–147

    Article  MathSciNet  ADS  Google Scholar 

  • G.M. Zaslavsky, 2002, Chaos, fractional kinetics, and anomalous transport, Physics Reports, 371, 461–580.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • G.M. Zaslavsky, 2005, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarasov, V.E. (2010). Fractional Dynamics and Discrete Maps with Memory. In: Fractional Dynamics. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14003-7_18

Download citation

Publish with us

Policies and ethics