Skip to main content

Fractional Statistical Mechanics

  • Chapter
Fractional Dynamics

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

Abstract

Statistical mechanics is the application of probability theory to study the dynamics of systems of arbitrary number of particles (Gibbs, 1960; Bogoliubov, 1960; Bogolyubov, 1970). Equations with derivatives of non-integer order have many applications in physical kinetics (see, for example, (Zaslavsky, 2002, 2005; Uchaikin, 2008) and (Zaslavsky, 1994; Saichev and Zaslavsky, 1997; Weitzner and Zaslavsky, 2001; Chechkin et al., 2002; Saxena et al., 2002; Zelenyi and Milovanov, 2004; Zaslavsky and Edelman, 2004; Nigmatullin, 2006; Tarasov and Zaslavsky, 2008; Rastovic, 2008)). Fractional calculus is used to describe anomalous diffusion, and transport theory (Montroll and Shlesinger, 1984; Metzler and Klafter, 2000; Zaslavsky, 2002; Uchaikin, 2003a,b; Metzler and Klafter, 2004). Application of fractional integration and differentiation in statistical mechanics was also considered in (Tarasov, 2006a, 2007a) and (Tarasov, 2004, 2005b,a, 2006b, 2007b). Fractional kinetic equations usually appear from some phenomenological models. We suggest fractional generalizations of some basic equations of statistical mechanics. To obtain these equations, the probability conservation in a fractional differential volume element of the phase space can be used (Tarasov, 2006a, 2007a). This element can be considered as a small part of the phase space set with non-integer-dimension. We derive the Liouville equation with fractional derivatives with respect to coordinates and momenta. The fractional Liouville equation (Tarasov, 2006a, 2007a) is obtained from the conservation of probability to find a system in a fractional volume element.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J. de Boer, G.E. Uhlenbeck, (Eds.), 1962, Studies in Statistical Mechanics, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • N.N. Bogolyubov, 1946, Kinetic equations, Zhurnal Eksperimentaal’noi i Teoreticheskoi Fiziki, 16, 691–702. In Russian; and Journal of Physics USSR, 10, 265–274.

    Google Scholar 

  • N.N. Bogoliubov, 1960, Problems of Dynamic Theory in Statistical Physics, Oak Ridge, Technical Information Service; and OGIZ, Moscow, 1946. In Russian.

    Google Scholar 

  • N.N. Bogolyubov, 1970, Selected Works, Vol.2, Naukova Dumka, Kiev.

    Google Scholar 

  • N.N. Bogoliubov, 1991, Selected Works. Part II. Quantum and Classical Statistical Mechanics, Gordon and Breach, New York.

    Google Scholar 

  • N.N. Bogolyubov, N.N. Bogolyubov, Jr., 1982, Introduction to Quantum Statistical Mechanics, World Scientific Publishing, Singapore.

    Google Scholar 

  • A. Campa, T. Dauxois, S. Ruffo, 2009, Statistical mechanics and dynamics of solvable models with long-range interactions, Physics Reports, 480, 57–159.

    Article  MathSciNet  ADS  Google Scholar 

  • A.V. Chechkin, V.Yu. Gonchar, M. Szydlowsky, 2002, Fractional kinetics for relaxation and superdiffusion in magnetic field, Physics of Plasmas, 9, 78–88.

    Article  ADS  Google Scholar 

  • G. Ecker, 1972, Theory of Fully Ionized Plasmas, Academic Press, New York.

    Google Scholar 

  • V. Feller, 1971, An introduction to Probability Theory and its Applications, Vol.2, Wiley, New York.

    MATH  Google Scholar 

  • D. Forster, 1975, Hydrodynamics Fluctuations, Broken Symmetry, and Correlation Functions, Benjamin, London.

    Google Scholar 

  • J.W. Gibbs, 1960, Elementary Principles in Statistical Mechanics, Dover, New York, 1960; and Yale University Press, New Haven, 1902.

    MATH  Google Scholar 

  • K.P. Gurov, 1966, Foundation of Kinetic Theory. Method of N.N. Bogolyubov, Nauka, Moscow. In Russian.

    Google Scholar 

  • A. Isihara, 1971, Statistical Physics, Academic Press, New York. Appendix IV, and Section 7.5.

    Google Scholar 

  • A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.

    MATH  Google Scholar 

  • N.A. Krall, A.W. Trivelpiece, 1973, Principles of Plasma Physics, McGraw-Hill, New York.

    Google Scholar 

  • R.L. Liboff, 1998, Kinetic Theory: Classical, Quantum and Relativistic Description, 2nd ed., Wiley, New York.

    Google Scholar 

  • G.A. Martynov, 1997, Classical Statistical Mechanics, Kluwer, Dordrecht.

    MATH  Google Scholar 

  • R. Metzler, J. Klafter, 2000, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339, 1–77.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R. Metzler, J. Klafter, 2004, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, Journal of Physics A, 37, R161–R208.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • E.W. Montroll, M.F. Shlesinger, 1984, The wonderful world of random walks, In Studies in Statistical Mechanics, Vol.11, J. Lebowitz, E. Montroll (Eds.), North-Holland, Amsterdam, 1–121.

    Google Scholar 

  • R.R. Nigmatullin, 2006, Fractional kinetic equations and universal decoupling of a memory function in mesoscale region, Physica A, 363, 282–298.

    Article  ADS  Google Scholar 

  • D.Ya. Petrina, V.I. Gerasimenko, P.V. Malishev, 2002, Mathematical Foundation of Classical Statistical Mechanics, 2nd ed., Taylor and Francis, London, New York, 338p.; and Naukova Dumka, Kiev, 1985. In Russian.

    Google Scholar 

  • D. Rastovic, 2008, Fractional Fokker-Planck equations and artificial neural networks for stochastic control of tokamak, Journal of Fusion Energy, 27, 182–187.

    Article  Google Scholar 

  • P. Resibois, M. De Leener, 1977, Classical Kinetic Theory of Fluids, Wiley, New York. Section IX.4.

    Google Scholar 

  • A.I. Saichev, G.M. Zaslavsky, 1997, Fractional kinetic equations: solutions and applications, Chaos, 1, 753–764.

    Article  MathSciNet  ADS  Google Scholar 

  • S.G. Samko, A.A. Kilbas, O.I. Marichev, 1993, Integrals and Derivatives of Fractional Order and Applications, Nauka i Tehnika, Minsk, 1987. in Russian; and Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.

    Google Scholar 

  • R.K. Saxena, A.M. Mathai, H.J. Haubold, 2002, On fractional kinetic equations, Astrophysics and Space Science, 282, 281–287.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, 2004, Fractional generalization of Liouville equations, Chaos, 14, 123–127.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, 2005a, Fractional systems and fractional Bogoliubov hierarchy equations, Physical Review E, 71, 011102.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, 2005b, Fractional Liouville and BBGKI equations, Journal of Physics: Conference Series 7, 17–33.

    Article  ADS  Google Scholar 

  • V.E. Tarasov, 2005c, Fractional generalization of gradient and Hamiltonian systems, Journal of Physics A, 38, 5929–5943.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, 2005d, Stationary solutions of Liouville equations for non-Hamiltonian systems, Annals of Physics, 316, 393–413.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2005e, Fractional generalization of gradient systems, Letters in Mathematical Physics, 73, 49–58.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2005f, Fractional Fokker-Planck equation for fractal media, Chaos 15, 023102.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, 2006a, Fractional statistical mechanics, Chaos, 16, 033108.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, 2006b, Transport equations from Liouville equations for fractional systems, International Journal of Modern Physics B, 20, 341–353.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2006c, Fractional variations for dynamical systems: Hamilton and Lagrange approaches, Journal of Physics A, 39, 8409–8425.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, 2006d, Continuous limit of discrete systems with long-range interaction, Journal of Physics A, 39, 14895–14910.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, 2006e, Map of discrete system into continuous, Journal of Mathematical Physics, 47, 092901.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, 2007a, Liouville and Bogoliubov equations with fractional derivatives, Modern Physics Letters B, 21, 237–248.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2007b, Fokker-Planck equation for fractional systems, International Journal of Modern Physics B, 21, 955–967.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2008, Fractional vector calculus and fractional Maxwell’s equations, Annals of Physics, 323, 2756–2778.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, 2008, Fokker-Planck equation with fractional coordinate derivatives, Physica A, 387, 6505–6512.

    Article  MathSciNet  ADS  Google Scholar 

  • V.V. Uchaikin, 2003a, Self-similar anomalous diffusion and Levy-stable laws, Physics-Uspekhi, 46, 821–849.

    Article  ADS  Google Scholar 

  • V.V. Uchaikin, 2003b, Anomalous diffusion and fractional stable distributions, Journal of Experimental and Theoretical Physics, 97, 810–825.

    Article  ADS  Google Scholar 

  • V.V. Uchaikin, 2008, Method of Fractional Derivatives, Artishok, Ulyanovsk. In Russian.

    Google Scholar 

  • A.A. Vlasov, 1938, The vibrational properties of an electron gas, Zhurnal EksperimentaVnoi i Teoreticheskoi Fiziki, 8, 291–318.

    Google Scholar 

  • A.A. Vlasov, 1968, The vibrational properties of an electron gas, Soviet Physics Uspekhi, 10, 721–733.

    Article  ADS  Google Scholar 

  • A.A. Vlasov, 1945, On the kinetic theory of an assembly of particles with collective interaction, Journal of Physics USSR, 9, 25–40.

    MathSciNet  Google Scholar 

  • A.A. Vlasov, 1961, Many-particle Theory and its Application to Plasma, Gordon and Breach, New York.

    Google Scholar 

  • A.A. Vlasov 1966, Statistical Distribution Functions, Nauka, Moscow. In Russian.

    Google Scholar 

  • A.A. Vlasov, 1978, Nonlocal Statistical Mechanics, Nauka, Moscow. In Russian.

    Google Scholar 

  • H. Weitzner, G.M. Zaslavsky, 2001, Directional fractional kinetics, Chaos, 11, 384–396.

    Article  ADS  Google Scholar 

  • S.W. Wheatcraft, M.M. Meerschaert, 2008, Fractional conservation of mass, Advances in Water Resources, 31, 1377–1381.

    Article  ADS  Google Scholar 

  • G.M. Zaslavsky, 1994, Fractional kinetic equation for Hamiltonian chaos, Physica D, 76, 110–122.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • G.M. Zaslavsky, 2002, Chaos, fractional kinetics, and anomalous transport, Physics Reports, 371, 461–580.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • G.M. Zaslavsky, 2005, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • G.M. Zaslavsky, M.A. Edelman, 2004, Fractional kinetics: from pseudochaotic dynamics to Maxwell’s demon, Physica D, 193, 128–147.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • L.M. Zelenyi, A.V. Milovanov, 2004, Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics, Physics Uspekhi, 47, 749–788.

    Article  Google Scholar 

  • D.N. Zubarev, M.Yu. Novikov, 1972, Generalized formulation of the boundary condition for the Liouville equation and for BBGKY hierarchy, Theoretical and Mathematical Physics, 13, 1229–1238.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarasov, V.E. (2010). Fractional Statistical Mechanics. In: Fractional Dynamics. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14003-7_15

Download citation

Publish with us

Policies and ethics