Skip to main content

Multiscale Atmospheric Chemistry Modelling with GEMAQ

  • Chapter
  • First Online:
Book cover Integrated Systems of Meso-Meteorological and Chemical Transport Models

Abstract

Tropospheric chemistry and air quality processes were implemented on-line in the Global Environmental Multiscale model. The integrated model, GEM-AQ, was developed as a platform to investigate chemical weather at scales from global to urban. The current chemical mechanism is comprised of 50 gas-phase species, 116 chemical and 19 photolysis reactions, and is complemented by a sectional aerosol module with 5 aerosols types. All tracers are advected using the semi-Lagrangian scheme native to GEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benoit R, Cote J, Methot A (1989) Inclusion of a TKE boundary layer parametrization in the Canadian Regional Finite-Element Model. Mon Weather Rev 117:1726–1750

    Article  Google Scholar 

  • Cote J, Desmarais J-G, Gravel S, Methot A, Patoine A, Roch M, Staniforth A (1998a) The operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part II: Results. Mon Weather Rev 126:1397–1418

    Article  Google Scholar 

  • Cote J, Gravel S, Methot A, Patoine A, Roch M, Staniforth A (1998b) The operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: design considerations and formulation. Mon Weather Rev 126:1373–1395

    Article  Google Scholar 

  • Gong SL, Barrie LA, Blanchet J-P, von Salzen K, Lohmann U, Lesins G, Spacek L, Zhang LM, Girard E, Lin H, Leaitch R, Leighton H, Chylek P, Huang P (2003) Canadian Aerosol Module: a size-segregated simulation of atmospheric aerosol processes for climate and air quality models, 1. Module development. J Geophys Res 108:4007. doi:10.1029/2001JD002002

    Article  Google Scholar 

  • Gong SL, Huang P, Zhao TL, Sahsuvar L, Barrie LA, Kaminski JW, Li YF, Niu T (2007) GEM/POPs: a global 3-D dynamic model for semi-volatile persistent organic pollutants - 1. Model description and evaluations. Atmos Chem Phys Discuss 7:3397–3422

    Article  Google Scholar 

  • Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, Eder B (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39:6957–6975

    Article  Google Scholar 

  • Hervig ME, Russell JM III, Gordley LL, Park JH, Drayson SR (1993) Observations of aerosol by the HALOE experiment onboard UARS: a preliminary validation. Geophys Res Lett 20:1291–1294

    Article  Google Scholar 

  • Huang P, Gong SL, Zhao TL, Neary L, Barrie LA (2007) GEM/POPs: a global 3-D dynamic model for semi-volatile persistent organic pollutants – Part 2: global transports and budgets of PCBs. Atmos Chem Phys Discuss 7:3837–3857

    Article  Google Scholar 

  • Jockel P, Tost H, Pozzer A, Bruhl C, Buchholz J, Ganzeveld L, Hoor P, Kerkweg A, Lawrence MG, Sander R, Steil B, Stiller G, Tanarhte M, Taraborrelli D, van Aardenne J, Lelieveld J (2006) The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. Atmos Chem Phys 6:5067–5104

    Article  Google Scholar 

  • Kaminski JW, Plummer DA, Neary L, McConnell JC, Struzewska J, Lobocki L (2002) First application of MC2-AQ to multiscale air quality modelling over Europe. Phys Chem Earth 27:1517–1524

    Google Scholar 

  • Kaminski JW, Neary L, Struzewska J, McConnell JC, Lupu A, Jarosz J, Toyota K, Gong SL, Côté J, Liu X, Chance K, Richter A (2008) GEM-AQ, an on-line global multiscale chemical weather modelling system: model description and evaluation of gas phase chemistry processes. Atmos Chem Phys 8:3255–3281. doi:10.5194/acp-8-3255-2008

    Google Scholar 

  • Kuo HL (1974) Further studies on the parametrization of the influence of cumulus convection on largescale flow. J Atmos Sci 31:1232–1240

    Article  Google Scholar 

  • Landgraf J, Crutzen PJ (1998) An efficient method for online calculations of photolysis and heating rates. J Atmos Sci 55:863–878

    Article  Google Scholar 

  • Langner J, Robinson L, Persson C, Ullerstig A (1998) Validation of the operational emergency response model at the Swedish Meteorological and Hydrological Institute using data from etex and the chernobyl accident - description, test and sensitivity analysis in view of regulator applications. Atmos Environ 32:4325–4333

    Article  Google Scholar 

  • Lurmann FW, Lloyd AC, Atkinson R (1986) A chemical mechanism for use in long-range transport/acid deposition computer modelling. J Geophys Res 91:10905–10936

    Article  Google Scholar 

  • Marcal V, Rivire ED, Held G, Cautenet S, Freitas S (2006) Modelling study of the impact of deep convection on the UTLS air composition – Part I: analysis of ozone precursors. Atmos Chem Phys 6:1567–1584

    Article  Google Scholar 

  • O’Neill NT, Campanelli M, Lupu A, Thulasiraman S, Reid JS, Aube M, Neary L, Kaminski JW, McConnell JC (2006) Evaluation of the GEM–AQ air quality model during the Quebec smoke event of 2002: analysis of extensive and intensive optical disparities. Atmos Environ 40:3737–3749

    Article  Google Scholar 

  • Struzewska J, Kaminski JW (2007) Formation and transport of photooxidants over Europe during the July 2006 heat wave – observations and GEM–AQ model simulations. Atmos Chem Phys Discuss 7:10467–10514

    Article  Google Scholar 

  • Tulet P, Crassier V, Solmon F, Guedalia D, Rosset R (2003) Description of the Mesoscale Nonhydrostatic Chemistry model and application to a transboundary pollution episode between northern France and southern England. J Geophys Res 108:4021, doi:10.1029/2000JD000301

    Google Scholar 

  • Venkatram A, Karamchandani PK, Misra PK (1988) Testing a comprehensive acid deposition model. Atmos Environ 22:737–747

    Article  Google Scholar 

  • Wesely ML (1989) Parametrization of surface resistances to gaseous dry deposition in regional- scale numerical models. Atmos Environ 23:1293–1304

    Article  Google Scholar 

  • Yeh K-S, Cote J, Gravel S, Methot A, Patoine A, Roch M, Staniforth A (2002) The CMC–MRB Global Environmental Multiscale (GEM) Model. Part III: Nonhydrostatic Formulation. Mon Weather Rev 130:339–356

    Article  Google Scholar 

  • Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parametrization of cumulus convection in the CCC-GCM. Atmos Ocean 3:407–446

    Google Scholar 

  • Zhang L, Moran MD, Makar PA, Brook JR, Gong S (2002) Modelling gaseous dry deposition in AURAMS: a unified regional air-quality modelling system. Atmos Environ 36:537–560

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Kaminski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Kaminski, J., Neary, L., Struzewska, J., McConnell, J.C. (2010). Multiscale Atmospheric Chemistry Modelling with GEMAQ. In: Baklanov, A., Alexander, M., Sokhi, R. (eds) Integrated Systems of Meso-Meteorological and Chemical Transport Models. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13980-2_4

Download citation

Publish with us

Policies and ethics