Skip to main content

On-Line Coupled Meteorology and Chemistry Models in the US

  • Chapter
  • First Online:
Integrated Systems of Meso-Meteorological and Chemical Transport Models
  • 567 Accesses

Abstract

The climate–chemistry–aerosol–cloud–radiation feedbacks are important processes occurring in the atmosphere. Accurately simulating those feedbacks requires fully-coupled meteorology, climate, and chemistry models and presents significant challenges in terms of both scientific understanding and computational demand. This review focuses on history and current status of development and application of on-line models in the US Several representative on-line coupled meteorology and chemistry models such as GATOR/GCMOM, WRF/Chem, CAM3, MIRAGE, and Caltech unified GCM are included. Major model features, physical/chemical treatments, as well as typical applications are evaluated with a focus on aerosol microphysics treatments, aerosol feedbacks to planetary boundary layer meteorology, and aerosol–cloud interactions. Recommendations for future development and improvement of on-line coupled models are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Razzak H, Ghan SJ (2000) A parametrization of aerosol activation. 2. Multiple aerosol types. J Geophys Res 105:6837–6844

    Article  Google Scholar 

  • Abdul-Razzak H, Ghan SJ, Rivera-Carpio C (1998) A parametrization of aerosol activation: 1. Single aerosol type. J Geophys Res 103:6123–6132

    Article  Google Scholar 

  • Ackermann IJ, Hass H, Memmesheimer M, Ebel A, Binkowski FS, Shankar U (1998) Modal aerosol dynamics model for Europe: development and first applications. Atmos Environ 32(17):2981–2999

    Article  Google Scholar 

  • Austin J, Butchart N, Shine KP (1992) Possibility of an Arctic ozone hole in a doubled-CO2 climate. Nature 360:221–225

    Article  Google Scholar 

  • Baklanov A, Gross A, Sørensen JH (2004) Modelling and forecasting of regional and urban air quality and microclimate. J Comput Technol 9:82–97

    Google Scholar 

  • Baklanov A, Fay B, Kaminski J (2007) Overview of existing integrated (off-line and on-line) mesoscale systems in Europe, report of Working Group 2, April, http://www.cost728.org

  • Barth MC, Rasch PJ, Kiehl JT, Benkovitz CM, Schwartz SE (2000) Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: description, evaluation, features, and sensitivity to aqueous chemistry. J Geophys Res 105(1):1387–1416. doi: 10.1029/1999JD900773

    Article  Google Scholar 

  • Cariolle D, Deque M (1986) Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J Geophys Res 91(D10):10825–10846

    Article  Google Scholar 

  • Cariolle D, Lasserre-Bigorry A, Royer J-F, Geleyn J-F (1990) A general circulation model simulation of the springtime Antarctic ozone decrease and its impact on mid-latitudes. J Geophys Res 95(D2):1883–1898. doi: 10.1029/89JD01644

    Article  Google Scholar 

  • Chuang CC, Penner JE, Taylor KE, Grossman AS, Walton JJ (1997) An assessment of the radiative effects of anthropogenic sulfate. J Geophys Res 102:3761–3778

    Article  Google Scholar 

  • Chung SH, Seinfeld JH (2005) Climate response of direct radiative forcing of anthropogenic black carbon. J Geophys Res 110(D1):1102. doi:10.1029/2004JD005441

    Article  Google Scholar 

  • Clark JHE (1970) A quasi-geostrophic model of the winter stratospheric circulation. Mon Weather Rev 98(6):443–461

    Article  Google Scholar 

  • Collins WD, Coauthors (2004) Description of the NCAR Community Atmosphere Model (CAM3). Tech. Rep. NCAR/TN-464_STR, National Center for Atmospheric Research, Boulder, CO, 226 pp

    Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Briegleb BP (2006a) The formulation and atmospheric simulation of the community atmosphere model, Version 3 (CAM3). J Climate 19:2144–2161

    Article  Google Scholar 

  • Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006b) The Community Climate System Model version 3 (CCSM3). J Climate 19:2122–2143

    Article  Google Scholar 

  • Côté J, Gravel S, Méthot A, Patoine A, Roch M, Staniforth A (1998) The operational CMC MRB Global Environmental Multiscale (GEM) model: Part I – design considerations and formulation. Mon Weather Rev 126:1373–1395

    Article  Google Scholar 

  • Cunnold D, Alyea F, Phillips N, Prinn R (1975) A three-dimensional dynamical-chemical model of atmospheric ozone. J Atmos Sci 32:170–194

    Article  Google Scholar 

  • Easter RC, Ghan SJ, Zhang Y, Saylor RD, Chapman EG, Laulainen NS, Abdul-Razzak H, Leung LR, Bian X, Zaveri RA (2004) MIRAGE: model description and evaluation of aerosols and trace gases. J Geophys Res 109 (D20210) doi:10.1029/2004JD004571

    Google Scholar 

  • Eckman RS, Grose WL, Turner RE, Blackshear WT (1996) Polar ozone depletion: a three-dimensional chemical modelling study of its long-term global impact. J Geophys Res 101(D17):22977–22990. doi:10.1029/96JD02130

    Article  Google Scholar 

  • Fast JD, Gustafson WI Jr, Easter RC, Zaveri RA, Barnard JC, Chapman EG, Grell GA (2006) Evolution of ozone, particulates, and aerosol direct forcing in an urban area using a new fully-coupled meteorology, chemistry, and aerosol model. J Geophys Res 111:D21305. doi:10.1029/2005JD006721

    Article  Google Scholar 

  • Feichter J, Kjellstrom E, Rodhe H, Dentener F, Lelieveld J, Roelofs G-J (1996) Simulation of the tropospheric sulfur cycle in a global climate model. Atmos Environ 30:1693–1707

    Article  Google Scholar 

  • Ghan S, Easter R (2006) Impact of cloud-borne aerosol representation on aerosol direct and indirect effects. Atmos Chem Phys 6:4163–4174

    Article  Google Scholar 

  • Ghan SJ, Laulainen NS, Easter RC, Wagener R, Nemesure S, Chapman EG, Zhang Y, Leung LR (2001a) Evaluation of aerosol direct radiative forcing in MIRAGE. J Geophys Res 106:5295–5316

    Article  Google Scholar 

  • Ghan SJ, Easter RC, Hudson J, Breon F-M (2001b) Evaluation of aerosol indirect radiative forcing in MIRAGE. J Geophys Res 106:5317–5334

    Article  Google Scholar 

  • Ghan SJ, Easter RC, Chapman EG, Abdul-Razzak H, Zhang Y, Leung LR, Laulainen NS, Saylor RD, Zaveri RA (2001c) A physically-based estimate of radiative forcing by anthropogenic sulfate aerosol. J Geophys Res 106:5279–5293

    Article  Google Scholar 

  • Grell GA, Emeis S, Stockwell WR, Schoenemeyer T, Forkel R, Michalakes J, Knoche R, Seidl W (2000) Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign. Atmos Environ 34:1435–1453

    Article  Google Scholar 

  • Grell GA, McKeen S, Michalakes J, Bao J-W, Trainer M, E-Y Hsie (2002) Real-time simultaneous prediction of air pollution and weather during the Houston 2000 Field Experiment, presented at the 4th conference on atmospheric chemistry: atmospheric chemistry and Texas Field Study, American Meteorological Society, Orlando, 13–17 Jan 2002

    Google Scholar 

  • Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, Eder B (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39:6957–6975

    Article  Google Scholar 

  • Hu X-M, Zhang Y, Jacobson MZ, Chan CK (2008) Evaluation and improvement of gas/particle mass transfer treatments for aerosol simulation and forecast. J Geophys Res 113:D11208. doi:10.1029/200759009588

    Article  Google Scholar 

  • Hunt BG (1969) Experiments with a stratospheric general circulation model III. Large-scale diffusion of ozone including photochemistry. Mon Weather Rev 97(4):287–306

    Article  Google Scholar 

  • Jacobson MZ (1994) Developing, coupling, and applying a gas, aerosol, transport, and radiation model to study urban and regional air pollution. Ph.D. Thesis, Dept. of Atmospheric Sciences, University of California, Los Angeles, 436 pp

    Google Scholar 

  • Jacobson MZ (1995) Simulations of the rates of regeneration of the global ozone layer upon reduction or removal of ozone-destroying compounds. EOS Suppl Fall:1995, p F119. “Closing the hole,” Geotimes Magazine (American Geological Institute), April 1996, p 9

    Google Scholar 

  • Jacobson MZ (1997a) Development and application of a new air pollution modelling system – II. Aerosol module structure and design. Atmos Environ 31:131–144

    Article  Google Scholar 

  • Jacobson MZ (1997b) Development and application of a new air pollution modelling system. Part III: aerosol-phase simulations. Atmos Environ 31A:587–608

    Article  Google Scholar 

  • Jacobson MZ (2000) A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophys Res Lett 27:217–220

    Article  Google Scholar 

  • Jacobson MZ (2001a) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697

    Article  Google Scholar 

  • Jacobson MZ (2001b) Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J Geophys Res 106:1551–1568

    Article  Google Scholar 

  • Jacobson MZ (2001c) GATOR-GCMM: a global- through urban-scale air pollution and weather forecast model 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea, ice, and snow. J Geophys Res 106:5385–5401

    Article  Google Scholar 

  • Jacobson MZ (2002) Control of fossil-fuel particulate black carbon plus organic matter, possibly the most effective method of slowing global warming. J Geophys Res 107(D19):4410. doi:10.1029/2001JD001376

    Article  Google Scholar 

  • Jacobson MZ (2004a) The short-term cooling but long-term global warming due to biomass burning. J Climate 17:2909–2926

    Article  Google Scholar 

  • Jacobson MZ (2004b) The climate response of fossil-fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J Geophys Res 109:D21201. doi:10.1029/2004JD004945

    Article  Google Scholar 

  • Jacobson MZ (2005) A solution to the problem of nonequilibrium acid/base gas-particle transfer at long time step. Aerosol Sci Technol 39:92–103

    Article  Google Scholar 

  • Jacobson MZ (2006) Effects of absorption by soot inclusions within clouds and precipitation on global climate. J Phys Chem A 110:6860–6873

    Article  Google Scholar 

  • Jacobson MZ (2007) Effects of ethanol (E85) versus gasoline vehicles on cancer and mortality in the United States. Environ Sci Technol. doi:10.1021/es062085v

    Google Scholar 

  • Jacobson MZ, Lu R, Turco RP, Toon OB (1996) Development and application of a new air pollution modelling system. Part I: Gas-phase simulations. Atmos Environ 30B:1939–1963

    Article  Google Scholar 

  • Jacobson MZ, Seinfeld JH (2004) Evolution of nanoparticle size and mixing state near the point of emission. Atmos Environ 38:1839–1850

    Google Scholar 

  • Jacobson MZ, Seinfeld JH, Carmichael GR, Streets DG (2004) The effect on photochemical smog of converting the U.S. fleet of gasoline vehicles to modern diesel vehicles. Geophys Res Lett 31:L02116. doi:10.1029/2003GL018448

    Article  Google Scholar 

  • Jacobson MZ, Kaufmann YJ, Rudich Y (2007) Examining feedbacks of aerosols to urban climate with a model that treats 3-D clouds with aerosol inclusions. J Geophys Res 112:D24205. doi:10.1029/2007JD008922

    Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BB, Williamson DL, Rasch PJ (1998) The National Center for Atmospheric Research Community Climate Model: CCM3. J Climate 11:1131–1149

    Article  Google Scholar 

  • Krosholm U, Baklanov A, Mahura A, Gross A, Sørensen JH, Kaas E, Chenevez J, Lindberg K (2007) ENVIROHIRLAM: on-line integrated system, presentation at the COST-728/NetFAM workshop on integrated systems of meso-meteorological and chemical transport models, Copenhagen, Denmark, 21–23 May

    Google Scholar 

  • Liao H, Seinfeld JH (2005) Global impacts of gas-phase chemistry-aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone. J Geophys Res 110(D1):8208. doi:10.1029/2005JD005907

    Article  Google Scholar 

  • Liao H, Adams PJ, Chung SH, Seinfeld JH, Mickley LJ, Jacob DJ (2003) Interactions between tropospheric chemistry and aerosols in a unified general circulation model. J Geophys Res 108(D1):4001. doi:10.1029/2001JD001260

    Article  Google Scholar 

  • Lohmann U, Feichter J, Penner JE, Leaitch R (2000) Indirect effect of sulfate and carbonaceous aerosols: a mechanistic treatment. J Geophys Res 105:12193–12206

    Article  Google Scholar 

  • Manins P (2007) Integrated modelling systems in Australia, CSIRO, presentation at the COST-728/NetFAM workshop on Integrated systems of meso-meteorological and chemical transport models, Copenhagen, Denmark, 21–23 May

    Google Scholar 

  • Mathur R, Xiu A, Coats C, Alapaty K, Shankar U, Hanna A (1998) Development of an air quality modelling system with integrated meteorology, chemistry, and emissions. Proceedings of the Measurement of Toxic and Related Air Pollutants, AWMA, Cary, NC, September

    Google Scholar 

  • Misenis C, Zhang Y (2010) An Examination of WRF/Chem: Physical Parameterizations, Nesting Options, and Grid Resolutions. Atmospheric Research 97:315–334

    Google Scholar 

  • Pan Y, Hu X-M, Zhang Y (2008), Sensitivity of gaseous and aerosol predictions to gas-phase chemical mechanisms. Presentation at the 10th Conference on Atmospheric Chemistry, New Orleans, LA, 20–24 Jan

    Google Scholar 

  • Penner JE (2003) Comment on “Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming” by M. Z. Jacobson. J Geophys Res 108(D24):4771. doi:10.1029/2002JD003364

    Article  Google Scholar 

  • Rasch PJ, Boville BA, Brasseur GP (1995) A three-dimensional general circulation model with coupled chemistry for the middle atmosphere. J Geophys Res 100(D5):9041–9072. doi:10.1029/95JD00019

    Article  Google Scholar 

  • Rasch PJ, Barth MC, Kiehl JT, Schwartz SE, Benkovitz CM (2000) A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model Version 3. J Geophys Res 105:1367–1385

    Article  Google Scholar 

  • Roelofs G-J, Lelieveld J (1995) Distribution and budget of O3 in the troposphere calculated with a chemistry general circulation model. J Geophys Res 100(D10):20983–20998

    Article  Google Scholar 

  • Rose K, Brasseur G (1989) A three-dimensional model of chemically active trace species in the middle atmosphere during disturbed winter conditions. J Geophys Res 94(D13):16387–16403. doi:10.1029/89JD01092

    Article  Google Scholar 

  • Schell B, Ackermann IJ, Hass H, Binkowski FS, Ebel A (2001) Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J Geophys Res 106:28275–28293

    Google Scholar 

  • Schlesimger ME, Mintz Y (1979) Numerical simulation of ozone production, transport and distribution with a global atmospheric general circulation model. J Atmos Sci 36:1325–1361

    Article  Google Scholar 

  • Stockwell WR, Kirchner F, Kuhn M, Seefeld S (1997) A new mechanism for regional atmospheric chemistry modelling. J Geophys Res 102:25847–25879

    Article  Google Scholar 

  • Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Feichter H, Fillmore D, Ghan S, Ginoux P, Gong S, Grini A, Hendricks J, Horrowitz L, Isaksen I, Iversen T, Kirkevåg A, Kloster S, Koch D, Kristjánsson JE, Krol M, Lauer A, Lamarque JF, Liu X, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland O, Stier P, Takemura T, Tie X (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6:1777–1813

    Article  Google Scholar 

  • Tie X-X, Madronich S, Li G-H, Ying Z-M, Zhang R, Garcia AR, Lee-Taylor J, Liu Y-B (2007) Characterizations of chemical oxidants in Mexico City: a regional chemical dynamical model (WRF/Chem) study. Atmos Environ 41:1989–2008

    Article  Google Scholar 

  • Washington WM (1982) Documentation for the Community Climate Model (CCM), Version Ø. Tech. Rep. National Center for Atmospheric Research, Boulder, CO, 222 pp

    Google Scholar 

  • Yarwood G, Rao S, Yocke M (2005) Updates to the carbon bond chemical mechanism: CB05. Final Report prepared for the U.S. Environmental Protection Agency, RT-04-00675, ENVIRON International Corporation, Novato, CA 94945

    Google Scholar 

  • Zaveri RA, Peters LK (1999) A new lumped structure photochemical mechanism for large-scale applications. J Geophys Res 104:30387–30415

    Article  Google Scholar 

  • Zaveri RA, Easter RC, Fast JD, Peters LK (2008) Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J Geophys Res 113:D13204. doi:10.1029/2007JD008782

    Google Scholar 

  • Zhang Y (2008) Online coupled meteorology and chemistry models: history, current status, and outlook. Atmos Chem Phys 8:2895–2932

    Article  Google Scholar 

  • Zhang Y, Seigneur C, Seinfeld JH, Jacobson MZ, Binkowski FS (1999) Simulation of aerosol dynamics: a comparative review of algorithms used in air quality models. Aerosol Sci Technol 31:487–514

    Article  Google Scholar 

  • Zhang Y, Easter RC, Ghan SJ, Abdul-Razzak H (2002) Impact of aerosol size representation on modelling aerosol-cloud interactions. J Geophys Res 107, doi:10.1029/2001JD001549

    Google Scholar 

  • Zhang YB, Pun KV, Wu S-Y, Seigneur C, Pandis S, Jacobson M, Nenes A, Seinfeld J (2004) Development and application of the model for aerosol dynamics, reaction, ionization and dissolution (MADRID). J Geophys Res 109:D01202. doi:10.1029/2003JD003501

    Article  Google Scholar 

  • Zhang Y, Hu X-M, Howell GW, Sills E, Fast JD, Gustafson Jr. WI, Zaveri RA, Grell GA, Peckham SE, McKeen SA (2005a), Modelling atmospheric aerosols in WRF/CHEM. Oral presentation at the 2005 Joint WRF/MM5 User’s Workshop, Boulder, CO, 27–30 June

    Google Scholar 

  • Zhang Y, Hu X-M, Wang K, Huang J-P, Fast JD, Gustafson Jr. WI, Chu DA, Jang C (2005b) Evaluation of WRF/Chem MADRID with satellite and surface measurements: chemical and optical properties of aerosols. Oral presentation at the 2005 AGU Fall Meeting, San Francisco, CA, 5–9 Dec 2005

    Google Scholar 

  • Zhang Y, Hu X-M, Wen X-Y, Schere KL, Jang CJ (2007) Simulating climate-chemistry-aerosol-cloud-radiation feedbacks in WRF/Chem: model Development and initial application. Oral presentation at the 6th Annual CMAS Models-3 User’s Conference, Chapel Hill, NC, 1–3 Oct 2007

    Google Scholar 

  • Zhang Y, Pan Y, Wang K, Fast JD, Grell GA (2010a) Incorporation of MADRID into WRF/Chem and Initial Application to the TexAQS-2000 Episode. J geophys Res 115:D18202. doi:10.1029/2009JD013443

    Google Scholar 

  • Zhang Y, Wen X.-Y, Jang CJ (2010b) Simulating Climate-Chemistry-Aerosol-Cloud-Radiation Feedbacks in Continental U.S. using Online-Coupled WRF/Chem. Atmos Environ 44(29):3568–3582

    Google Scholar 

  • Zhang Y, Liu P, Liu X.-H, Pun B, Seigneur C, Jacobson MZ, Wang W.-X (2010c) Fine Scale Modeling of Wintertime Aerosol Mass, Number, and Size Distributions in Central California. J Geophys Res 115:D15207. doi:10.1029/2009JD012950

    Google Scholar 

Download references

Acknowledgements

The work was supported by the the US EPA-Science to Achieve Results (STAR) program (Grant # R83337601), US EPA/Office of Air Quality Planning & Standards via RTI International contract #4-321-0210288, the NSF Career Award No. Atm-0348819, and the Memorandum of Understanding between the US Environmental Protection Agency (EPA) and the US Department of Commerce’s National Oceanic and Atmospheric Administration (NOAA) and under agreement number DW13921548. Thanks are due to Steve Ghan and Richard Easter at PNNL, Mark Z. Jacobson at Stanford University, and Alexander Baklanov at Danish Meteorological Institute for helpful discussions for MIRAGE/CAM3, GATOR/GCMOM, and early on-line models in Russia, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang .

Editor information

Editors and Affiliations

Appendix – List of Acronyms and Symbols

Appendix – List of Acronyms and Symbols

Acronym

Definition

3D

Three-dimensional

APC

The analytical predictor of condensation

ASTEEM

The adaptive step time-split explicit Euler method

BC

Black carbon

CAM3

The community atmospheric model v. 3

CB05

The 2005 version of carbon bond mechanism

CBM-EX

The Stanford University’s extended carbon bond mechanism

CBM-Z

The Carbon-bond mechanism version Z

CCM

The NCAR community climate model

CCN

Cloud condensation nuclei

CFCs

Chlorofluorocarbons

CH4

Methane

CMAQ

The EPA’s community multiple air quality

CMU

Carnegie Mellon University

CO

Carbon monoxide

CO2

Carbon dioxide

CTMs

Chemical transport models

DEMA

The iterative dynamic effective medium approximation

DMS

Dimethyl sulfide

EQUISOLV II

The EQUIlibrium SOLVer version 2

EPA

The US Environmental Protection Agency

GCM

General circulation model

GATORG

The Gas, Aerosol, TranspOrt, Radiation, and General circulation model

GATOR/GCMOM

The Gas, Aerosol, TranspOrt, Radiation, General Circulation, Mesoscale, Ocean Model

GATOR/MMTD (or GATORM)

The gas, aerosol, transport, and radiation air quality model/a mesoscale meteorological and tracer dispersion model

GChM

The PNNL global chemistry model

H2O

Water

H2SO4

Sulfuric acid

IDN

Ice deposition nuclei

ISORROPIA

“Equilibrium” in Greek, refers to The ISORROPIA thermodynamic module

MADE/SORGAM

The Modal Aerosol Dynamics Model for Europe (MADE) with the secondary organic aerosol model (SORGAM)

MADRID

The model of aerosol dynamics, reaction, ionization, and dissolution

MARS-A

The model for an aerosol reacting system (MARS) –version A

MCCM (or MM5/Chem)

The multiscale climate chemistry model

MESA

The multicomponent equilibrium solver for aerosols

MM5

The Penn State University (PSU)/NCAR mesoscale model

MIRAGE

The model for integrated research on atmospheric global exchanges

MOSAIC

The model for simulating aerosol interactions and chemistry

MOZART4

The model for ozone and related chemical tracers version 4

MSA

Methane sulfonic acid

MTEM

The multicomponent Taylor expansion method

NCAR

The National Center for Atmospheric Research

NH4NO3

Ammonium nitrate

(NH4)2SO4

Ammonium sulfate

NO3

Nitrate radical

NOx

Nitrogen oxides

N2O

Nitrous oxide

NOAA

The national oceanic and atmospheric administration

O3

Ozone

OC

Organic carbon

PM2.5

Particles with aerodynamic diameters less than or equal to 2.5 μm

PNNL

The Pacific Northwest national laboratory

Qv

Water vapor

RACM

The regional atmospheric chemistry mechanism

RADM2

The gas-phase chemical mechanism of Regional Acid Deposition Model, version 2

RIs

Refractive indices

S(IV)

Dissolved sulfur compounds with oxidation state IV

SOA

Secondary organic aerosol

STAR

The US EPA-science to achieve results program

UCLA/GCM

The University of Los Angeles general circulation model

VOC

Volatile organic compound

WRF/Chem

The weather research forecast model with chemistry

ZSR

Zdanovskii-Stokes-Robinson

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y. (2010). On-Line Coupled Meteorology and Chemistry Models in the US. In: Baklanov, A., Alexander, M., Sokhi, R. (eds) Integrated Systems of Meso-Meteorological and Chemical Transport Models. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13980-2_2

Download citation

Publish with us

Policies and ethics