Advertisement

Abstract

Developing applications for distributed computation is becoming increasingly popular with the advent of grid computing. However, developing applications for the various grid middleware environments require attaining intimate knowledge of specific development approaches, languages and frameworks. This makes it challenging for scientists and domain specialists to take advantage of grid frameworks. In this paper, we propose a different approach for scientists to gain programmatic access to the grid of their choice. The principle idea is to provide an abstraction layer by means of a virtual file system through which the grid can be accessed using well-known and standardized system level operations available from virtually all programming languages and operating systems. By abstracting away low-level grid details, domain scientists can more easily gain access to high-performance computing resources without learning the specifics of the grid middleware being used. We have implemented such a virtual file system on HIMAN, a peer-to-peer grid middleware platform. Our initial experimental evaluation shows that the virtual file system only cause a negligible overhead during task execution.

Keywords

Grid Computing Task Execution Desktop Grid System Driver Grid Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    El-Desoky, A.E., Ali, H.A., Azab, A.A.: A pure peer-to-peer desktop grid framework with efficient fault tolerance. In: ICCES 2007, Cairo, Egypt, pp. 346–352 (2007)Google Scholar
  2. 2.
    Allcock, W., Bresnahan, J., Kettimuthu, R., Link, J.: The globus extensible input/output system (xio): A protocol independent io system for the grid. In: IPDPS 2005: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2005) - Workshop 4, Washington, DC, USA, p. 179.1. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  3. 3.
    Azab, A.: HIMAN: A Pure Peer-to-Peer Computational Grid Framework. Lambert Academic Publishing (2010)Google Scholar
  4. 4.
    Bent, J., Thain, D., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., Livny, M.: Explicit control in a batch-aware distributed file system (March 2004)Google Scholar
  5. 5.
    Callback File System, http://www.eldos.com/cbfs/
  6. 6.
  7. 7.
    D4Science: Distributed collaboratories Infrastructure on Grid ENabled Technology 4 Science, http://www.d4science.eu/
  8. 8.
    Dokan file system, http://dokan-dev.net/en/
  9. 9.
    EGEE: Enabling Grids for E-Science in Europe, http://public.eu-egee.org/
  10. 10.
    Ernst, M., Fuhrmann, P., Gasthuber, M., Mkrtchyan, T., dCache, C.W.: A distributed storage data caching system. In: Computing in High Energy Physics, Beijing, China (2001)Google Scholar
  11. 11.
    Filesystem in Userspace, http://fuse.sourceforge.net/
  12. 12.
    GLite: Light weight middleware for grid computing, http://glite.web.cern.ch/glite/
  13. 13.
    The Globus toolkit, http://www.globus.org/toolkit/
  14. 14.
  15. 15.
    Jones, M.B.: Interposition agents: Transparently interposing user code at the system interface. In: fourteenth ACM symposium on Operating systems principles, Asheville, North Carolina, United States, pp. 80–93 (1994)Google Scholar
  16. 16.
    Lederer, H., Pringle, G.J., Girou, D., Hermanns, M.-A., Erbacci, G.: Deisa: Extreme computing in an advanced supercomputing environment (2007)Google Scholar
  17. 17.
    Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., Jones, L.: Socks protocol version 5 (1996)Google Scholar
  18. 18.
  19. 19.
    Miller, B., Callaghan, M., Cargille, J., Hollingsworth, J., Irvin, R.B., Karavanic, K., Kunchithapadam, K., Newhall, T.: The paradyn parallel performance measurement tools. IEEE Computer 28(11), 37–46 (1995)Google Scholar
  20. 20.
    Narasimhan, P., Moser, L.E., Melliar-Smith, P.M.: Exploiting the internet inter-orb protocol interface to provide corba with fault tolerance. In: Usenix Conference on Object-Oriented Technologies and Systems, Portland, Oregon (1997)Google Scholar
  21. 21.
    NorduGrid: Nordic Testbed for Wide Area Computing and Data Handling, http://www.nordugrid.org/
  22. 22.
    Pike, R., Presotto, D., Thompson, K., Trickey, H., Winterbottom, P.: The use of name spaces in Plan 9. SIGOPS Oper. Syst. Rev. 27(2), 72–76 (1993)CrossRefGoogle Scholar
  23. 23.
    G.R.: Grid3: An application grid laboratory for science. In: Computing in High Energy Physics and Nuclear Physics, p. 18. Interlaken, Switzerland (2004)Google Scholar
  24. 24.
    Son, S., Livny, M.: Recovering internet symmetry in distributed computing. In: CCGrid. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  25. 25.
    Thain, D., Livny, M.: Parrot: Transparent user-level middleware for data-intensive computing. Scalable Computing: Practice and Experience 6(3), 9–18 (2005)Google Scholar
  26. 26.
    UNICORE: Uniform Interface to Computing Resources, http://www.unicore.eu
  27. 27.
    van Hensbergen, E.V., Evans, N.P., Stanley-Marbell, P.: A unified execution model for cloud computing. In: Large Scale Distributed Systems and Middleware (LADIS 2009), October 2009. ACM, New York (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Abdulrahman Azab
    • 1
  • Hein Meling
    • 1
  1. 1.Dept. of Electrical Engineering and Computer ScienceUniversity of StavangerStavangerNorway

Personalised recommendations