Advertisement

Theoretical Analysis of an Ideal Startup Scheme in Multihomed SCTP

  • Johan Eklund
  • Karl-Johan Grinnemo
  • Anna Brunstrom
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6164)

Abstract

SCTP congestion control includes the slow-start mechanism to probe the network for available bandwidth. In case of a path switch in a multihomed association, this mechanism may cause a sudden drop in throughput and increased message delays. By estimating the available bandwidth on the alternate path it is possible to utilize a more efficient startup scheme. In this paper, we analytically compare and quantify the degrading impact of slow start in relation to an ideal startup scheme. We consider three different scenarios where a path switch could occur. Further, we identify relevant traffic for these scenarios. Our results point out that the most prominent performance gain is seen for applications generating high traffic loads, like video conferencing. For this traffic, we have seen reductions in transfer time of more than 75% by an ideal startup scheme. Moreover, the results show an increasing impact of an improved startup mechanism with increasing RTTs.

Keywords

Congestion Control Alternate Path Mean Opinion Score Video Conference Signaling Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allman, M., Paxson, V., Blanton, E.: RFC 5681: TCP Congestion Control (September 2009)Google Scholar
  2. 2.
    Andersen, A.T.: Modelling of Packet Traffic with Matrix Analytic Methods. PhD thesis, Technical University of Denmark, DTU (1995)Google Scholar
  3. 3.
    Casetti, C., Chiasserini, C.-F., Fracchia, R., Meo, M.: AISLE: Autonomic interface selection for wireless users. In: Proceedings of WOWMOM 2006, Washington, DC, USA, pp. 42–48. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  4. 4.
    Chu, Y., Dukkipati, N., Cheng, Y.: Increasing TCP’s Initial Window. Internet draft, Internet Engineering Task Force, draft-hkchu-tcpm-initcwnd- 00.txt (February 2010)Google Scholar
  5. 5.
    Floyd, S., Allman, M., Jain, A., Sarolahti, P.: RFC 3758: Quick-Start for TCP and IP (January 2007)Google Scholar
  6. 6.
    Shaojian, F., Ma, L., Attiquzzaman, M., Yong-Jin, L.: Architecture and performance of SIGMA: a seamless mobility architecture for data networks. In: Proc. of ICC 2005, Seoul, Korea (May 2005)Google Scholar
  7. 7.
    Trace file and Statistics: H.264/AVC, Horizon Talk show, http://trace.eas.asu.edu/h264/horizon
  8. 8.
    Yihua, H., Brassil, J.: NATHALIE An Adaptive Network-Aware Traffic Equalizer. In: Proc. of ICC 2007, Glasgow, UK (June 2007)Google Scholar
  9. 9.
    ITU-T. Recommendation G.711 Pulse Code Modulation(PCM) of voice frequencies. ITU-T (1972)Google Scholar
  10. 10.
    ITU-T. Methods for Subjective Determination of Transmission Quality, P.800. ITU-T (1996)Google Scholar
  11. 11.
    Fitzpatrick, J., Murphy, S., Atiquzzaman, M., Murphy, J.: ECHO A Quality of Service Based Endpoint Centric Handover Scheme for VoIP. In: Proc. of the Wireless Communications and Networking Conference, Las Vegas, USA (April 2008)Google Scholar
  12. 12.
    Nagle, J.: RFC 896 Congestion Control in IP/TCP Internetworks (January 1984)Google Scholar
  13. 13.
    Kurose, J., Ross, K.: Computer Networking -A Top Down Approach Featuring the Internet, 3rd edn. Addison Wesley, Reading (2002)Google Scholar
  14. 14.
    Zheng, K., Liu, M., Li, Z.-C., Xu, G.: SHOP: An Integrated Scheme for SCTP Handover Optimization in Multihomed Environments. In: Proc. of the Global Telecommunication Conference 2008, New Orleans, LA, USA (December 2008)Google Scholar
  15. 15.
    Liu, D., Allman, M., Jin, S., Wang, L.: Congestion Control without a Startup Phase. In: Proc. of PFLDnet Workshop, Los angeles, CA, USA (February 2007)Google Scholar
  16. 16.
    Hu, N., Steenkiste, P.: Estimating Available Bandwidth Using Packet Pair Probing. Technical report, Carnegie Mellon University (2002)Google Scholar
  17. 17.
    Postel, J.: RFC 793: Transmission Control Protocol (September 1981)Google Scholar
  18. 18.
    Fracchia, R., Casetti, C., Chiasserini, C.-F., Meo, M.: A WiSE extension of SCTP for wireless networks. In: Proc. of ICC 2005, Seoul, South Korea (May 2005)Google Scholar
  19. 19.
    Scholtz, F.J.: Statistical Analysis of Common Channel Signaling System No. 7 Traffic. In: 15th Internet Traffic Engineering and Traffic Management (ITC) Specialist Seminar, Wurzburg, Germany (July 2002)Google Scholar
  20. 20.
    Stewart, R.: RFC 4960: Stream Control Transmission Protocol (September 2007)Google Scholar
  21. 21.
    Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., Kozuka, M.: RFC 5061: Stream Control Transmission Protocol Dynamic Address ReconfigurationGoogle Scholar
  22. 22.
    Weigand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVS video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 560–576 (July 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Johan Eklund
    • 1
  • Karl-Johan Grinnemo
    • 2
  • Anna Brunstrom
    • 1
  1. 1.Department of Computer ScienceKarlstad UniversitySweden
  2. 2.School of Information and Communication TechnologyKTHSweden

Personalised recommendations