Skip to main content

Kolmogorov Complexity Cores

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6158))

Abstract

We study the relationship between complexity cores of a language and the descriptional complexity of the characteristic sequence of the language based on Kolmogorov complexity.

We prove that a recursive set A has a complexity core if for all constants c, the computational depth (the difference between time-bounded and unbounded Kolmogorov complexities) of the characteristic sequence of A up to length n is larger than c infinitely often. We also show that if a language has a complexity core of exponential density, then it cannot be accepted in average polynomial time, when the strings are distributed according to a time bounded version of the universal distribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antunes, L., Fortnow, L., Pinto, A., Souto, A.: Low-depth witnesses are easy to find. In: Proceedings of CCC 2007 (2007)

    Google Scholar 

  2. Antunes, L., Fortnow, L., van Melkebeek, D., Vinodchandran, N.: Computational depth: concept and applications. Theor. Comput. Sci. 354(3) (2006)

    Google Scholar 

  3. Balcázar, J., Hermo, M., Mayordomo, E.: Characterizations of logarithmic advice complexity classes. In: Proceedings of the WCCASA. NHP (1992)

    Google Scholar 

  4. Juedes, D., Lutz, J.: Kolmogorov complexity, complexity cores and the distribution of hardness. In: Kolmogorov Complexity and Computational Complexity. Springer, Heidelberg (1992)

    Google Scholar 

  5. Juedes, D., Lutz, J.: The complexity and distribution of hard problems. In: Proceedings of SFCS. IEEE Computer Society, Los Alamitos (1993)

    Google Scholar 

  6. Karp, R., Lipton, R.: Some connections between nonuniform and uniform complexity classes. In: Proceedings of STOC. ACM, New York (1980)

    Google Scholar 

  7. Karp, R., Lipton, R.: Turing machines that take advice. In: Engeler, E., et al. (eds.) Logic and Algorithmic. L’Enseignement Mathématique (1982)

    Google Scholar 

  8. Ko, K.: Some observations on the probabilistic algorithms and np-hard problems. Inf. Process. Lett. 14(1) (1982)

    Google Scholar 

  9. Ko, K.: On helping by robust oracle machines. Theor. Comput. Sci. 52(1-2) (1987)

    Google Scholar 

  10. Levin, L.: Average case complete problems. SIAM J. Comput. 15(1) (1986)

    Google Scholar 

  11. Li, M., Vitányi, P.: Average case complexity under the universal distribution equals worst-case complexity. Inf. Process. Lett. 42(3) (1992)

    Google Scholar 

  12. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer Publishing Company, Heidelberg (2008) (incorporated)

    Book  MATH  Google Scholar 

  13. Lynch, N.: On reducibility to complex or sparse sets. J. ACM 22(3) (1975)

    Google Scholar 

  14. Meyer, A., Paterson, M.: With what frequency are apparently intractable problems difficult? MIT technical report TM-126 (1979)

    Google Scholar 

  15. Orponen, P., Schöning, U.: The structure of polynomial complexity cores (extended abstract). In: Proceedings of the MFCS. Springer, Heidelberg (1984)

    Google Scholar 

  16. Orponen, P., Schöning, U.: The density and complexity of polynomial cores for intractable sets. Inf. Control 70(1) (1986)

    Google Scholar 

  17. Schapire, R.: The emerging theory of average case complexity. MIT technical report 431 (1990)

    Google Scholar 

  18. Schöning, U.: Complete sets and closeness to complexity classes. Theory of Computing Systems 19(1) (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Souto, A. (2010). Kolmogorov Complexity Cores. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds) Programs, Proofs, Processes. CiE 2010. Lecture Notes in Computer Science, vol 6158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13962-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13962-8_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13961-1

  • Online ISBN: 978-3-642-13962-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics