Skip to main content

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Intraseasonal anomalies of moist deep convection in the tropics evolve together with the global atmospheric circulation. Some of the coherence between tropical convection and extratropical weather is a consequence of redistribution of mass by convection, which is associated with broad-scale overturning circulations, global and regional cycles of atmospheric angular momentum (Anderson and Rosen, 1983; Weickmann and Sardeshmukh, 1994; Weickmann and Berry, 2009), and Rossby wavetrains that extend eastward and poleward across the midlatitudes (Sardeshmukh and Hoskins, 1988; Jin and Hoskins, 1995; Bladeé and Hartmann, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, G., G. Vaughan, D. Brunner, P. T. May, W. Heyes, P. Minnis, and J. K. Ayers (2008) Modulation of tropical convection by breaking Rossby waves. Quart. J. Roy. Meteorol. Soc., 135(638), 125–137, doi: 10.1002/qj.349.

    Article  Google Scholar 

  • Anderson, J. R. and R. D. Rosen (1983) The latitude–height structure of 40–50 day variations in atmospheric angular momentum. J. Atmos. Sci., 40, 1584–1591.

    Article  Google Scholar 

  • Arkin, P. and P. J. Webster (1985) Annual and interannual variability of tropical–extratropical interaction: An empirical study. Mon. Wea. Rev., 113, 1510–1523.

    Article  Google Scholar 

  • Blade;, I. and D. L. Hartmann (1995) The linear and nonlinear extratropical response to tropical intraseasonal heating. J. Atmos. Sci., 52, 4448–4471.

    Article  Google Scholar 

  • Brankovic, C., T. Palmer, and L. Ferranti (1994) Predictability of seasonal atmospheric variations. J. Climate, 7, 217–237.

    Article  Google Scholar 

  • Branstator, G. W. (2002) Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 1893–1910.

    Article  Google Scholar 

  • Carvalho, L. M. V., C. Jones, and T. Ambrizzi (2005) Opposite phases of the Antarctic oscillation and relationships with intraseasonal to interannual activity in the tropics during austral summer. J. Climate, 18, 702–718.

    Article  Google Scholar 

  • Cassou, C. (2008) Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523–527.

    Article  CAS  Google Scholar 

  • Charney, J. and J. Shukla (1981) Predictability of monsoons. In: J. Lighthill and R. Pearce (Eds.), Monsoon Dynamics. Cambridge University Press, Cambridge, U.K., chap. 6.

    Google Scholar 

  • Donald, A., H. Meinke, B. Power, M. C. Wheeler, A. de H.N. Maia, R. C. Stone, J. Ribbe, and N. White (2006) Near-global impact of the Madden–Julian Oscillation on rainfall. Geophys. Res. Lett., 33, L09704, 4pp, doi: 10.1029/2005GL025155.

    Google Scholar 

  • Ferranti, L., T. N. Palmer, F. Molteni, and K. Klinker (1990) Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 2177–2199.

    Article  Google Scholar 

  • Frank, W. M. and P. E. Roundy (2006) The relationship between tropical waves and tropical cyclogenesis. Mon. Wea. Rev., 134, 2397–2417.

    Article  Google Scholar 

  • Frederiksen, J. S. and C. S. Frederiksen (1997) Mechanisms of the formation of intraseasonal oscillations and Australian monsoon disturbances: The roles of convection, barotropical and baroclinic instability. Beitr. Phys. Atmos., 70, 39–56.

    Google Scholar 

  • Gottschalck, J., M. Wheeler, K. Weickmann, F. Vitart, N. Savage, H. Lin, H. Hendon, D. Waliser, K. Sperber, M. Nakagawa et al. (2010) A framework for assessing operational Madden–Julian Oscillation forecasts: A CLIVAR MJO Working Group project. Bull. Amer. Meteorol. Society, 91, 1247–1258.

    Article  Google Scholar 

  • Gruber, A. (1974) The wavenumber-frequency spectra of satellite-measured brightness in the tropics. J. Atmos. Sci., 31, 1675–1680.

    Article  Google Scholar 

  • Hendon, H. H. and B. Liebmann (1991) The structure and annual variation of antisymmetric fluctuations of tropical convection and their association with Rossby-gravity waves. J. Atmos. Sci., 48, 2127–2140.

    Article  Google Scholar 

  • Hendon, H. H. and M. L. Salby (1994) The life cycle of the Madden–Julian Oscillation. J. Atmos. Sci., 51, 2225–2237.

    Article  Google Scholar 

  • Hendon, H. H. and M. L. Salby (1996) Planetary-scale circulations forced by intraseasonal variations of observed convection. J. Atmos. Sci., 53, 1751–1758.

    Article  Google Scholar 

  • Hendon, H. H., B. Liebmann, M. Newman, J. D. Glick, and J. E. Schemm (2000) Mediumrange forecast errors associated with active episodes of the Madden–Julian oscillation. Mon. Wea. Rev., 128, 69–86.

    Article  Google Scholar 

  • Higgins, R. W. and K. C. Mo (1997) Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10, 223–244.

    Article  Google Scholar 

  • Higgins, R. W., J.-K. E. Schemm, W. Shi, and A. Leetmaa (2000) Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 14, 403–417.

    Article  Google Scholar 

  • Hoskins, B. J. and G.-Y. Yang (2000) The equatorial response to higher latitude forcing. J. Atmos. Sci., 57, 1197–1213.

    Article  Google Scholar 

  • Hsu, H.-H. (1996) Global view of the intraseasonal oscillation during northern winter. J. Climate, 9, 2386–2406.

    Article  Google Scholar 

  • Hsu, H.-H., B. J. Hoskins, and F.-F. Jin (1990) The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47, 823–839.

    Article  Google Scholar 

  • Jiang, X., D. E. Waliser, M. Wheeler, C. Jones, M.-I. Lee, and S. Schubert (2008) Assessing the skill of an all-season statistical forecast model for the Madden–Julian Oscillation. Mon. Wea. Rev., 136, 1940–1956.

    Article  Google Scholar 

  • Jin, F. and B. J. Hoskins (1995) The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307–319.

    Article  Google Scholar 

  • Jones, C. (2000) Occurrence of extreme precipitation events in California and relationships with the Madden–Julian Oscillation. J. Climate, 13, 3576–3587.

    Article  Google Scholar 

  • Jones, C. and J.-K. E. Schemm (2000) The influence of intraseasonal variations on mediumrange weather forecasts over South America. Mon. Wea. Rev., 128, 486–494.

    Article  Google Scholar 

  • Jones, C. (2000) Occurrence of extreme precipitation events in California and relationships with the Madden–Julian Oscillation. J. Climate, 13, 3576–3587.

    Article  Google Scholar 

  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern (2004a) Global occurrences of extreme precipitation and the Madden–Julian Oscillation: Observations and predictability. J. Climate, 17, 4575–4589.

    Article  Google Scholar 

  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern (2004b) The Madden–Julian oscillation and its impact on Northern Hemisphere weather predictability. Mon. Wea. Rev., 132, 14621471.

    Article  Google Scholar 

  • Kang, I.-S. and H.-M. Kim (2010) Assessment of MJO predictability for boreal winter with various statistical and dynamical models. J. Climate, 23, 2368–2378.

    Article  Google Scholar 

  • Kiladis, G. N. and K. M. Weickmann (1992) Extratropical forcing of tropical Pacific convection during northern winter. Mon. Wea. Rev., 120, 1924–1938.

    Article  Google Scholar 

  • Kiladis, G. N. and M. C. Wheeler (1995) Horizontal and vertical structure of observed tropo- spheric equatorial Rossby waves. J. Geophys. Res., 100, 22981–22997.

    Article  Google Scholar 

  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall (2006) Three-dimensional structure and dynamics of African easterly waves, Part I: Observations. J. Atmos. Sci., 63, 2212–2230.

    Article  Google Scholar 

  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy (2009) Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi: 10.1029/2008RG000266.

    Google Scholar 

  • Knutson, T. R. and K. L. Weickmann (1987) 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 1407–1435.

    Article  Google Scholar 

  • Krishnamurti, T. N., P. K. Jayakumar, J. Sheng, N. Surgi, and A. Kumar (1985) Divergent circulations on the 30 to 50 day time scale. J. Atmos. Sci., 42, 364–375.

    Article  Google Scholar 

  • Lau, K.-M. and T. J. Phillips (1986) Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal timescales. J. Atmos. Sci., 43, 1164–1181.

    Article  Google Scholar 

  • Lau, K.-M. and S. Shen (1988) On the dynamics of intraseasonal oscillations and ENSO. J. Atmos. Sci., 25, 1781–1797.

    Article  Google Scholar 

  • Liebmann, B. and D. L. Hartmann (1984) An observational study of tropical-midlatitude interaction on intraseasonal time scales during winter. J. Atmos. Sci., 41, 3333–3350

    Article  Google Scholar 

  • Liebmann, B. and H. H. Hendon (1990) Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 1463–1479.

    Article  Google Scholar 

  • Liebmann, B. and C. A. Smith (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteorol. Society, 77, 1275–1277.

    Google Scholar 

  • Lim, H. and C. P. Chang (1981) A theory of midlatitude forcing of tropical motions during the winter monsoon. J. Atmos. Sci., 41, 3333–3350.

    Google Scholar 

  • Lin, J.-L., G. N. Kiladis, B. E. Mapes, K. M. Weickmann, K. R. Sperber, W. Lin, M. C. Wheeler, S. D. Schubert, A. D. Genio, L. J. Donner et al. (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models, Part I: Convective signals. J. Climate, 19, 2665–2690.

    Google Scholar 

  • Lin, J. W.-B., J. D. Neelin, and N. Zeng (2000) Maintenance of tropical intraseasonal variability: Impact of evaporation–wind feedback and midlatitude storms. J. Atmos. Sci., 57, 2793–2823.

    Article  Google Scholar 

  • Lin, H., G. Brunet, and J. Derome (2009) An observed connection between the North Atlantic oscillation and the Madden–Julian oscillation. J. Climate, 22, 364–380.

    Article  Google Scholar 

  • Lindzen, R. S. (1967) Planetary waves on beta planes. Mon. Wea. Rev., 95, 441–451.

    Article  Google Scholar 

  • Livezey, R. E. and M. M. Timofeyeva (2008) The first decade of long-lead U.S. seasonal forecasts: Insights from a skill analysis. Bull. Amer. Meteorol. Society, 89, 843–854.

    Google Scholar 

  • L’Heureux, M. L. and R. W. Higgins (2008) Boreal winter links between the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 21, 3040–3050.

    Article  Google Scholar 

  • Madden, R. A. and P. R. Julian (1994) Observations of the 40–50-day tropical oscillation: A review. Mon. Wea. Rev., 122, 814–837.

    Article  Google Scholar 

  • Majda, A. J., B. Khouider, G. N. Kiladis, K. H. Straub, and M. G. Shefter (2004) A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61, 2188–2205.

    Article  Google Scholar 

  • Matsuno, T. (1966) Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Japan, 44, 25–43.

    Google Scholar 

  • Kiladis, G. N. and Wheeler, M. (1995) Horizontal and vertical structure of observed tropo- spheric equatorial Rossby waves. J. Geophys. Res., 100, 22981–22997.

    Article  Google Scholar 

  • Matthews, A. J. and G. N. Kiladis (1999a) The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661677.

    Article  Google Scholar 

  • Matthews, A. J. and G. N. Kiladis (1999b) Interactions between ENSO, transient circulation, and tropical convection over the eastern tropical Pacific. J. Climate, 12, 3062–3086.

    Article  Google Scholar 

  • Matthews, A. J. and G. N. Kiladis (2000) A model of Rossby waves linked to submonthly convection over the eastern tropical Pacific. J. Atmos. Sci., 57, 3785–3798.

    Article  Google Scholar 

  • Matthews, A. J. and M. P. Meredith (2004) Variability of Antarctic circumpolar transport and the Southern Annual Mode associated with the Madden–Julian Oscillation. Geophys. Res. Lett., 31, L24312, doi: 10.1029/2004GL021666.

    Article  Google Scholar 

  • Matthews, A. J., B. J. Hoskins, J. M. Slingo, and M. Blackburn (1996) Development of convection along the SPCZ within a Madden–Julian Oscillation. Quart. J. Roy. Meteorol. Soc., 122, 669–688.

    Article  Google Scholar 

  • Matthews, A. J., B. J. Hoskins, and M. Masutani (2004) The global response to tropical heating in the Madden–Julian oscillation during northern winter. Quart. J. Roy. Meteorol. Soc., 130, 1991–2011.

    Article  Google Scholar 

  • Mo, K. C. (2000) Intraseasonal modulation of summer precipitation over North America. Mon. Wea. Rev., 128, 1490–1505.

    Article  Google Scholar 

  • Mo, K. C. and R. W. Higgins (1998) Tropical influences on California precipitation. J. Climate, 11, 412–430.

    Article  Google Scholar 

  • Molteni, F. and L. Ferranti (2000) Non-linear Aspects of Systematic Errors of the ECMWF Coupled Model (technical report). European Centre for Medium-Range Weather Forecasts, Reading, U.K.

    Google Scholar 

  • Moore, R. W., O. Martius, and T. Spengler (2010) The modulation of the subtropical and extratropical atmosphere in the Pacific Basin in response to the Madden Julian Oscillation. Mon. Wea. Rev., in press.

    Google Scholar 

  • Mori, M. and M. Watanabe (2008) The growth and triggering mechanisms of the PNA: A MJO–PNA coherence. J. Meteorol. Soc. Japan, 86, 213–236.

    Article  Google Scholar 

  • Nogues-Paegle, J., L. A. Byerle, and K. C. Mo (2000) Intraseasonal modulation of South American summer precipitation. Mon. Wea. Rev., 128, 837–850.

    Article  Google Scholar 

  • Pohl, B. and A. J. Matthews (2007) Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Climate, 20, 2659–2674.

    Article  Google Scholar 

  • Preisendorfer, R. W. and C. D. Mobley (1984) Climate forecast verifications: United States mainland, 1974–1983. Mon. Wea. Rev., 112, 809–825.

    Article  Google Scholar 

  • Ray, P. and C. Zhang (2010) A case study on the mechanisms of extratropical influence on the Madden–Julian Oscillation. J. Atmos. Sci., 67, 515–528.

    Article  Google Scholar 

  • Ray, P., C. Zhang, J. Dudhia, and S. S. Chen (2009) A numerical case study on the initiation of the Madden–Julian Oscillation. J. Atmos. Sci., 66, 310–331.

    Article  Google Scholar 

  • Roundy, P. E. (2008) Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 1342–1359.

    Article  Google Scholar 

  • Roundy, P. E. and G. N. Kiladis (2006) Observed relationships between oceanic Kelvin waves and atmospheric forcing. J. Climate, 19, 5253–5272.

    Article  Google Scholar 

  • Roundy, P. E. and J. R. Kravitz (2009) The association of the evolution of intraseasonal oscillations with ENSO phase. J. Climate, 22, 381–395.

    Article  Google Scholar 

  • Roundy, P. E. and L. G. Verhagen (2010) Variations in the flow of the global atmosphere associated with a composite convectively coupled oceanic Kelvin wave. J. Climate, 23, 41924201.

    Article  Google Scholar 

  • Roundy, P. E., K. MacRitchie, J. Asuma, and T. Melino (2010) Modulation of the global atmospheric circulation by combined activity in the Madden–Julian Oscillation and the El Nino/Southern Oscillation during boreal winter. J. Climate, 23, 4045–4059.

    Article  Google Scholar 

  • Sardeshmukh, P. D. and B. J. Hoskins (1988) The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1228–1251.

    Article  Google Scholar 

  • Shinoda, T. and H. H. Hendon (2002) Rectified wind forcing and latent heat flux produced by the Madden–Julian Oscillation. J. Climate, 15, 3500–3507.

    Article  Google Scholar 

  • Straub, K. H. and G. N. Kiladis (2002) Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 30–53.

    Article  Google Scholar 

  • Straub, K. H. and G. N. Kiladis (2003) Interactions between the boreal summer intraseasonal oscillation and higher frequency tropical wave activity. Mon. Wea. Rev., 131, 945–960.

    Article  Google Scholar 

  • Straus, D. M. and R. S. Lindzen (2000) Planetary-scale baroclinic instability and the MJO. J. Atmos. Sci., 57, 3609–3626.

    Article  Google Scholar 

  • Vecchi, G. A. and N. A. Bond (2004) The Madden–Julian Oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophys. Res. Lett., 31, L24312, doi: 10.1029/2004GL021666.

    Article  Google Scholar 

  • Vitart, F. (2004): Monthly forecasting at ECMWF. Mon. Wea. Rev., 132, 2761–2779.

    Article  Google Scholar 

  • Vitart, F. et al. (2008) The new VAREPA-monthly forecasting system: A first step toward seemless prediction. Quart. J. Roy. Meteorol. Soc., 134, 1789–1799.

    Article  Google Scholar 

  • Waliser, D. E., K. M. Lau, and J.-H. Kim (1999) Influence of coupled sea surface temperatures on the Madden Julian Oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333–358.

    Article  Google Scholar 

  • Wallace, J. M. and D. S. Gutzler (1981) Teleconnections in the geopotential height field during Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812.

    Article  Google Scholar 

  • Webster, P. J. and J. R. Holton (1982) Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci., 39, 722–733.

    Article  Google Scholar 

  • Weickmann, K. M. (1983) Intraseasonal circulation and outgoing longwave radiation modes during northern winter. Mon. Wea. Rev., 111, 1838–1858.

    Article  Google Scholar 

  • Weickmann, K. M. and E. Berry (2007) A synoptic–dynamic model of subseasonal atmospheric variability. Mon. Wea. Rev., 135, 449–474.

    Article  Google Scholar 

  • Weickmann, K. and E. Berry (2009) The tropical Madden–Julian oscillation and the global wind oscillation. Mon. Wea. Rev., 137, 1601–1614.

    Article  Google Scholar 

  • Weickmann, K. M. and P. D. Sardeshmukh (1994) The atmospheric angular momentum cycle associated with the Madden–Julian oscillation. J. Atmos. Sci., 51, 3194–3208.

    Article  Google Scholar 

  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach (1985) A global scale analysis of intraseasonal fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113, 941–961.

    Article  Google Scholar 

  • Weickmann, K. M., G. N. Kiladis, and P. D. Sardeshmukh (1997) The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54,1445–1461.

    Article  Google Scholar 

  • Wheeler, M. and H. H. Hendon (2004) An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 123, 19171932.

    Article  Google Scholar 

  • Wheeler, M. and G. N. Kiladis (1999) Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374399.

    Article  Google Scholar 

  • Wheeler, M. C. and K. M. Weickmann (2001) Real time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Mon. Wea. Rev., 129, 26772694.

    Article  Google Scholar 

  • Whitaker, J. S. and K. M. Weickmann (2001) Subseasonal variations of tropical convection and week two prediction of wintertime western North American rainfall. J. Climate, 14, 15241534.

    Article  Google Scholar 

  • Wilks, D. S. (2006) Statistical Methods in the Atmospheric Sciences. Academic Press, San Diego, CA, 627 pp.

    Google Scholar 

  • Zhang, C. (2005) The Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, doi: 10.1029/2004RG000158.

    Google Scholar 

  • Zangvil, A. (1975) Temporal and spatial behavior of large-scale disturbances in tropical cloudiness deduced from satellite brightness data. Mon. Wea. Rev., 103, 904–920.

    Article  Google Scholar 

  • Zangvil, A. and M. Yanai (1981) Upper tropospheric waves in the tropics, Part II: Association with clouds in the wavenumber–frequency domain. J. Atmos. Sci., 38, 939–953.

    Article  Google Scholar 

  • Zhou, S. and A. J. Miller (2005) The interaction of the Madden–Julian Oscillation and the Arctic Oscillation. J. Climate, 18, 143–159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lau, W.K.M., Waliser, D.E., Roundy, P.E. (2012). Tropical–extratropical interactions. In: Intraseasonal Variability in the Atmosphere-Ocean Climate System. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13914-7_14

Download citation

Publish with us

Policies and ethics