Skip to main content

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Since the late 1980s, many studies have been devoted to developing our theoretical understanding of the tropical ISO in order to improve model simulations and predictions. Significant progress has been achieved, although some aspects of theories remain disputable and incomplete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. R. (1987) Response of the tropical atmosphere to low-frequency thermal forcing. J. Atmos. Sci., 44, 676–686.

    Google Scholar 

  • Anderson, J. R. and D. E. Stevens (1987) Presence of linear wavelike modes in a zonally symmetric model of the tropical atmosphere. J. Atmos. Sci., 44, 2115–2117.

    Google Scholar 

  • Annamalai, H. and J. M. Slingo (2001) Active/break cycles: Diagnosis of the intraseasonal variability of the Asian Summer Monsoon. Climate Dynamics, 18, 85–102.

    Google Scholar 

  • Arakawa, A. and W. H. Schubert (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701.

    Google Scholar 

  • Betts, A. K. and M. J. Miller (1986) New convective adjustment scheme, Part 2: Single column tests using GATE wave, BOMEX, ATEX, and Arctic air-mass data sets. Quart. J. Roy. Meteorol. Soc., 112, 693–709.

    Google Scholar 

  • Biello, J. A. and A. J. Majda (2005) A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62, 1694–1721.

    Google Scholar 

  • Blackadar, A. K. and H. Tennekes (1968) Asymptotic similarity in neutral barotropic planetary boundary layers. J. Atmos. Sci., 25, 1015–1020.

    Google Scholar 

  • Blade, I. and D. L. Hartmann (1993) Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 2922–2939.

    Google Scholar 

  • Boos, W. R. and Z. Kuang (2010) Mechanisms of poleward propagating, intraseasonal convective anomalies in cloud system–resolving models. J. Atmos. Sci., 67, 3673–3691.

    Google Scholar 

  • Bretherton, C., P. Blossey, and M. Khairoutdinov (2005) An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 4237–4292.

    Google Scholar 

  • Brown, R. G. and C. S. Bretherton (1995) Tropical wave instabilities: Convective interaction with dynamics using the Emanuel convective parameterization. J. Atmos. Sci., 52, 67–82.

    Google Scholar 

  • Chang, C.-P. (1977) Some theoretical problems of the planetary-scale monsoons. Pure Appl. Geophys., 115, 1089–1109.

    Google Scholar 

  • Chang, C.-P. and H. Lim (1988) Kelvin wave–CISK: A possible mechanism for the 30–50 day oscillations. J. Atmos. Sci., 45, 1709–1720.

    Google Scholar 

  • Chao, W. C. (1987) On the origin of the tropical intraseasonal oscillation. J. Atmos. Sci., 44, 19401949.

    Google Scholar 

  • Chao, W. C. (1995) A critique of wave–CISK as an explanation for the 40–50 day tropical intraseasonal oscillation. J. Meteorol. Soc. Japan, 73, 677–684.

    Google Scholar 

  • Chao, W. C. and L. Deng (1998) Tropical intraseasonal oscillation, super cloud clusters, and cumulus convection schemes. Part II: 3D aquaplanet simulations. J. Atmos. Sci., 55, 690–709.

    Google Scholar 

  • Charney, J. G. and A. Eliassen (1964) On the growth of the hurricane depression. J. Atmos. Sci., 21, 68–75.

    Google Scholar 

  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes (1996) Multiscale variability of deep convection in relation to large-scale circulation during TOGA COARE. J. Atmos. Sci., 53, 13801409.

    Google Scholar 

  • Chen, T. C. and M. Murakami (1988) The 30–50 day variation of convective activity over the western Pacific Ocean with the emphasis on the northwestern region. Mon. Wea. Rev., 116, 892–906.

    Google Scholar 

  • Cho, H. R. and D. Pendlebury (1997) Wave CISK of equatorial waves and the vertical distribution of cumulus heating. J. Atmos. Sci., 54, 2429–2440.

    Google Scholar 

  • Chou, S. H., C. L. Shie, R. M. Atlas, and J. Ardizzone (1995) The December 1992 westerly wind burst and its impact on evaporation determined from SSMI data. paper presented at Proc. Int. Scientific Conf. on the Tropical Ocean Global Atmosphere Program, Melbourne, Australia. World Meteorological Organization, Geneva, pp. 489–493.

    Google Scholar 

  • Cubukcu, N. and T. N. Krishnamurti (2002) Low-frequency controls on the thresholds of sea surface temperature over the western tropical Pacific. J. Climate, 15, 1626–1642.

    Google Scholar 

  • Davey, M. K. and A. E. Gill (1987) Experiments on tropical circulation with a simple moist model. Quart. J. Roy. Meteorol. Soc., 113, 1237–1269.

    Google Scholar 

  • Deser, C. (1993) Diagnosis of the surface momentum balance over the tropical Pacific Ocean. J. Climate, 6, 64–74.

    Google Scholar 

  • Drbohlav, H.-K. L. and B. Wang (2005) Mechanism of the northward propagating intraseasonal oscillation in the south Asian monsoon region: Results from a zonally averaged model. J. Climate, 18, 952–972.

    Google Scholar 

  • Dunkerton, T. J. and F. X. Crum (1991) Scale selection and propagation of wave–CISK with conditional heating. J. Meteorol. Soc. Japan, 69, 449–458.

    Google Scholar 

  • Eliassen, A. (1971) On the Ekman layer in a circular vortex. J. Meteorol. Soc. Japan, 49 (Special Issue), 784–789.

    Google Scholar 

  • Emanuel, K. A. (1987) Air-sea interaction model of intraseasonal oscillations in the Tropics. J. Atmos. Sci., 44, 2324–2340.

    Google Scholar 

  • Emanuel, K. A. (1993) The effect of convective response time on WISHE modes. J. Atmos. Sci., 50, 1763–1776.

    Google Scholar 

  • Fasullo, J. and P. J. Webster (1995) Ocean–atmosphere energetics during westerly wind bursts: The development of a conceptual model. paper presented at Proc. 20th Climate Diagnnostics Workshop, Seattle, WA, October 23–27. U.S. Department of Commerce. Springfield, VA, p. 41.

    Google Scholar 

  • Ferranti, L., J. M. Slingo, T. N. Palmer, and B. J. Hoskins (1997) Relations between interannual and intraseasonal monsoon variability as diagnosed from AMIP integrations. Quart. J. Roy. Meteorol. Soc., 123, 1323–1357.

    Google Scholar 

  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler (1997) The feedback between equatorial convection and local radiative and evaporative processes: The implication for intraseasonal oscillations. J. Atmos. Sci., 54, 2373–2386.

    Google Scholar 

  • Fu, X. and B. Wang (2004) Different solutions of intraseasonal oscillation exist in atmosphere–ocean coupled model and atmosphere-only model. J. Climate, 17, 12631271.

    Google Scholar 

  • Fu, X. and B. Wang (2009) Critical roles of the stratiform rainfall in sustaining the Madden Julian Oscillation: GCM experiments. J. Climate, 22, 3939–3959.

    Google Scholar 

  • Fu, X., B. Wang, T. Li, and J. P. McCreary (2003) Coupling between northward propagating intraseasonal oscillations and sea-surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 17331753.

    Google Scholar 

  • Fuchs, Z. and D. J. Raymond (2005) Large-scale modes in a rotating atmosphere with radiative–convective instability and WISHE. J. Atmos. Sci., 62, 4084–4094.

    Google Scholar 

  • Fuchs, Z. and D. J. Raymond (2007) A simple, vertically resolved model of tropical disturbances with a humidity closure. Tellus, 59A, 344–354.

    Google Scholar 

  • Gill, A. E. (1980) Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteorol. Soc., 106, 447–462.

    Google Scholar 

  • Goswami, B. N. and J. Shukla (1984) Quasi-periodic oscillations in a symmetric general circulation model. J. Atmos. Sci., 41, 20–37.

    Google Scholar 

  • Goswami, P. and V. Mathew (1994) A mechanism of scale selection in tropical circulation at observed intraseasonal frequencies. J. Atmos. Sci., 51, 3155–3166.

    Google Scholar 

  • Grabowski, W. W. (2003) MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60, 847–864.

    Google Scholar 

  • Gualdi, S., A. Navarra, and M. Fischer (1999) The tropical intraseasonal oscillation in a coupled ocean–atmosphere general circulation model. Geophys. Res. Lett., 26, 2973–2976.

    Google Scholar 

  • Haertel, P. T. and G. N. Kiladis (2004) Dynamics of 2-day equatorial waves. J. Atmos. Sci., 60, 27072721.

    Google Scholar 

  • Hayashi, Y. (1970) A theory of large scale equatorial waves generated by condensation heat and accelerating the zonal wind. J. Meteorol. Soc. Japan, 48, 140–160.

    Google Scholar 

  • Hayashi, Y. and S. Miyahara (1987) Three-dimensional linear response model of the tropical intraseasonal oscillation. J. Meteorol. Soc. Japan, 65, 843–852.

    Google Scholar 

  • Hayashi, Y. and A. Sumi (1986) 30–40-day oscillations simulated in an “aqua planet” model. J. Meteorol. Soc. Japan, 64, 451–467.

    Google Scholar 

  • Hendon, H. H. (1988) Simple model of the 40–50 day oscillation. J. Atmos. Sci., 45, 569–584.

    Google Scholar 

  • Hendon, H. H. (2000) Impact of air–sea coupling on the Madden–Julian Oscillation in a general circulation model. J. Atmos. Sci., 57, 3939–3952.

    Google Scholar 

  • Hendon, H. H. and M. L. Salby (1994) The life cycle of the Madden–Julian Oscillation. J. Atmos. Sci., 51, 2225–2237.

    Google Scholar 

  • Hirst, A. C. and K. M. Lau (1990) Intraseasonal and interannual oscillations in coupled ocean–atmosphere models. J. Climate, 3, 713–725.

    Google Scholar 

  • Hoskins, B. J. and M. J. Rodwell (1995) A model of the Asian summer monsoon, Part I: The global scale. J. Atmos. Sci., 52, 1329–1340.

    Google Scholar 

  • Houze, R. A., S. S. Chen, D. K. Kingsmill, Y. Serra, and S. E. Yuter (2000) Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57, 3058–3089.

    Google Scholar 

  • Hsu, H. H. and C. H. Weng (2001) Northwestward propagation of the intraseasonal oscillation in the western north Pacific during the boreal summer: Structure and mechanism. J. Climate, 14, 3834–3850.

    Google Scholar 

  • Hsu, H. H., B. J. Hoskins, and F.-F. Jin (1990) The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47, 823–839.

    Google Scholar 

  • Hsu, P.-C. and T. Li (2011) Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific, Part II: Apparent heat and moisture sources and eddy momentum transport. J. Climate, 24, 942–961.

    Google Scholar 

  • Hsu, P.-C., T. Li, and C.-H. Tsou (2011) Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific, Part I: Energetics diagnosis. J. Climate, 24, 927–941.

    Google Scholar 

  • Hu, Q. and D. A. Randall (1994) Low-frequency oscillations in radiative–convective systems. J. Atmos. Sci., 51, 1089–1099.

    Google Scholar 

  • Hu, Q. and D. A. Randall (1995) Low-frequency oscillations in radiative-convective systems, Part II: An idealized model. J. Atmos. Sci., 52, 478–490.

    Google Scholar 

  • Inness, P. M. and J. M. Slingo (2003) Simulation of the Madden–Julian Oscillation in a coupled general circulation model, Part I: Comparison with observations and an atmospheric only GCM. J. Climate, 16, 345–364.

    Google Scholar 

  • Inness, P. M., J. M. Slingo, E. Guilyardi, and C. Jeffrey (2003) Simulation of the Madden–Julian Oscillation in a coupled general circulation model, Part II: The role of the basic state. J. Climate, 16, 365–382.

    Google Scholar 

  • Itoh, H. (1989) The mechanism for the scale selection of tropical intraseasonal oscillations, Part I: Selection of wavenumber 1 and the three-scale structure. J. Atmos. Sci., 46, 17791798.

    Google Scholar 

  • Jiang, X. and D. E. Waliser (2008) Northward propagation of the subseasonal variability over the East Pacific Warm Pool. Geophys. Res. Lett., 35, L09814, doi: 10.1029/2008GL033723.

    Google Scholar 

  • Jiang, X., T. Li, and B. Wang (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 1022–1039.

    Google Scholar 

  • Johnson, R. H. and X. Lin (1997) Episodic trade wind regimes over the western Pacific warm pool. J. Atmos. Sci., 54, 2020–2034.

    Google Scholar 

  • Johnson, R. H., T. M. Rickenbarch, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert (1999) Trimodal characteristics of tropical convection. J. Climate, 12, 2397–2417.

    Google Scholar 

  • Jones, C. and B. C. Weare (1996) The role of low-level moisture convergence and ocean latent heat fluxes in the Madden–Julian Oscillation: An observational analysis using ISCCP data and ECMWF analyses. J. Climate, 9, 3086–3104.

    Google Scholar 

  • Jones, C., D. E. Waliser, and C. Gautier (1998) The influence of the Madden-Julian Oscillation on ocean surface heat fluxes and sea surface temperature. J. Climate, 11, 10571072.

    Google Scholar 

  • Kemball-Cook, S. and B. Wang (2001) Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 2923–2942.

    Google Scholar 

  • Kemball-Cook, S. and B. C. Weare (2001) The onset of convection in the Madden–Julian Oscillation. J. Climate, 14, 780–793.

    Google Scholar 

  • Kemball-Cook, S., B. Wang, and X. Fu (2002) Simulation of the intraseasonal oscillation in ECHAM4 model: The impact of coupling with an ocean model. J. Atmos. Sci., 59, 14331453.

    Google Scholar 

  • Khairoutdinov, M., D. A. Randall, and C. DeMott (2005) Simulation of the atmospheric general circulation using a cloud-resolving model as a super-parameterization of physical process. J. Atmos. Sci., 62, 2136–2154.

    Google Scholar 

  • Khouider, B. and A. J. Majda (2006) A simple multicloud parameterization for convectively coupled tropical waves, Part I: Linear analysis. J. Atmos. Sci., 63, 1308—1323.

    Google Scholar 

  • Khouider, B. and A. J. Majda (2007) A simple multicloud parameterization for convectively coupled tropical waves, Part II. Nonlinear simulations. J. Atmos. Sci., 64, 381–400.

    Google Scholar 

  • Kikuchi, K. and B. Wang (2010) Spatiotemporal wavelet transform and the multiscale behavior of the Madden–Julian Oscillation. J. Climate, 23, 3814–3834.

    Google Scholar 

  • Kikuchi, K. and Y. N. Takayabu (2004) Equatorial circumnavigation of moisture signal associated with the Madden–Julian Oscillation (MJO) during the boreal winter. J. Meteorol. Soc. Japan, 81, 851–869.

    Google Scholar 

  • Kiladis, G. N., K. H. Straub, and P. T. Haertel (2005) Zonal and vertical structure of the Madden–Julian Oscillation. J. Atmos. Sci., 62, 2790–2809.

    Google Scholar 

  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy (2009) Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003.

    Google Scholar 

  • Knutson, T. R., K. M. Weickmann, and J. E. Kutzbach (1986) Global-scale intraseasonal oscillations of outgoing longwave radiation and 250 mb zonal wind during northern hemisphere summer. Mon. Wea. Rev., 114, 605–623.

    Google Scholar 

  • Krishnamurti, T. N. and D. Subrahmanyam (1982) The 30–50 day mode at 850mb during MONEX. J. Atmos. Sci., 39, 2088–2095.

    Google Scholar 

  • Krishnamurti, T. N., P. K. Jayakumar, J. Sheng, N. Surgi, and A. Kumar (1985) Divergent circulations on the 30 to 50 day time scale. J. Atmos. Sci., 42, 364–375.

    Google Scholar 

  • Krishnamurti, T. N., D. K. Oosterhof, and A. V. Mehta (1988) Air–sea interaction on the time scale of 30 to 50 days. J. Atmos. Sci., 45, 1304–1322.

    Google Scholar 

  • Krishnamurti, T. N., D. R. Chakraborty, N. Cubukcu, L. Stefanova, and T. S. V. Kumar (2003) A mechanism of the Madden–Julian Oscillation based on interactions in the frequency domain. Quart. J. Roy. Meteorol. Soc., 129, 2559–2590.

    Google Scholar 

  • Krishnan, R., C. Zhang, and M. Sugi (2000) Dynamics of breaks in the Indian summer monsoon. J. Atmos. Sci., 57, 1354–1372.

    Google Scholar 

  • Kuang, Z. (2008) A moisture–stratiform instability for convective coupled waves. J. Atmos. Sci., 65, 834–854.

    Google Scholar 

  • Kuma, K.-I. (1994) The Madden–Julian oscillation and tropical disturbances in an aqua- planet version of JMA global model with T63 and T159 resolution. J. Meteorol. Soc. Japan, 72, 147–172.

    Google Scholar 

  • Kuo, H. L. (1965) On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 40–63.

    Google Scholar 

  • Kuo, H. L. (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232–1240.

    Google Scholar 

  • Lau, K. H. and N. C. Lau (1990) Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 1888–1913.

    Google Scholar 

  • Lau, K. M. and P. H. Chan (1985) Aspects of the 40–50 day oscillation during northern winter as inferred from OLR. Mon. Wea. Rev., 113, 1889–1909.

    Google Scholar 

  • Lau, K. M. and P. H. Chan (1986) Aspects of the 40–50 day oscillation during northern summer as inferred from OLR. Mon. Wea. Rev., 114, 1354–1367.

    Google Scholar 

  • Lau, K. M. and L. Peng (1987) Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere, Part I: Basic theory. J. Atmos. Sci., 44, 950–972.

    Google Scholar 

  • Lau, K. M. and L. Peng (1990) Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere, Part III: Monsoon dynamics. J. Atmos. Sci., 47, 1443–1462.

    Google Scholar 

  • Lau, K. M. and C. H. Sui (1997) Mechanisms of short-term sea surface temperature regulation: Observations during TOGA–COARE. J. Climate, 10, 465–472.

    Google Scholar 

  • Lau, K. M. and H.-T. Wu (2003) Warm rain processes over the tropical ocean and climate implications. Geophys. Res. Lett., 30(24), 2290, doi: 10.1029/2003GL018567.

    Google Scholar 

  • Lau, K. M., L. Peng, C. H. Sui, and T. Nakazawa (1989) Dynamics of super cloud clusters, westerly wind bursts, 30–60 day oscillations and ENSO: A unified view. J. Meteorol. Soc. Japan, 67, 205–219.

    Google Scholar 

  • Lau, N.-C. and K. M. Lau (1986) The structure and propagation of intraseasonal oscillation appearing in a GFDL general circulation model. J. Atmos. Sci., 43, 2023–2047.

    Google Scholar 

  • Lau, N.-C., I. M. Held, and J. D. Neelin (1988) The Madden–Julian Oscillation in an idealized GCM model. J. Atmos. Sci., 45, 3810–3832.

    Google Scholar 

  • Lawrence, D. M. and P. J. Webster (2002) The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 1593–1606.

    Google Scholar 

  • Lee, M. I., I. S. Kang, J. K. Kim, and B. E. Mapes (2001) Influence of cloud–radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res., 106, 14219–14233.

    Google Scholar 

  • Lee, M. I., I. S. Kang, and B. E. Mapes (2003) Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteorol. Soc. Japan, 81, 963–992.

    Google Scholar 

  • Li, T. and B. Wang (1994) A thermodynamic equilibrium climate model for monthly mean surface winds and precipitation over the tropical Pacific. J. Atmos. Sci., 51, 1372–1385.

    Google Scholar 

  • Li, X. and H. R. Cho (1997) Development and propagation of equatorial waves. Adv. Atmos. Sci. China, 14, 323–338.

    Google Scholar 

  • Lim, H., T. K. Lim, and C.-P. Chang (1990) Reexamination of wave–CISK theory: Existence and properties of nonlinear wave–CISK modes. J. Atmos. Sci., 47, 3078–3091.

    Google Scholar 

  • Lin, J. W.-B., J. Neelin, and N. Zeng (2000) Maintenance of tropical intraseasonal variability: Impact of evaporation–wind feedback and midlatitude storms. J. Atmos. Sci., 57, 27932823.

    Google Scholar 

  • Lin, J., B. E. Mapes, M. Zhang, and M. Newman (2004) Stratiform precipitation, vertical heating profiles, and the Madden–Julian Oscillation. J. Atmos. Sci., 61, 296–309.

    Google Scholar 

  • Lin, J.-L., G. N. Kiladis, B. E. Mapes, K. M. Weickmann, K. R. Sperber, W. Lin, M. C. Wheeler, S. D., Schubert, A. Del Genio, L. J. Donner et al. (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models, Part I: Convective signals. J. Climate, 19, 26652690, doi: 10.1175/JCLI3735.1.

    Google Scholar 

  • Lin, X. and R. H. Johnson (1996) Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA–COARE. J. Atmos. Sci., 53, 695–715.

    Google Scholar 

  • Lindzen, R. S. (1974) Wave–CISK and tropical spectra. J. Atmos. Sci., 31, 1447–1449.

    Google Scholar 

  • Liu, P., B. Wang, K. R. Sperber, T. Li, and G. A. Meehl (2005) MJO in the NCAR CAM2 with the Tiedtke convective scheme. J. Climate, 18(15), 3007–3020.

    Google Scholar 

  • Liu, P., M. Satoh, B. Wang, H. Fudeyasu, T. Nasuno, T. Li, H. Miura, H. Taniguchi, H. Masunaga, X. Fu et al. (2009) An MJO simulated by the NICAM at 14-km and 7-km resolutions. Mon. Wea. Rev., 137, 3254–3268, doi: 10.1175/2009MWR2965.1.

    Google Scholar 

  • Madden, R. A. (1986) Seasonal variations of the 40–50 day oscillation in the tropics. J. Atmos. Sci., 43, 3138–3158.

    Google Scholar 

  • Madden, R. A. and P. R. Julian (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.

    Google Scholar 

  • Madden, R. A. and P. R. Julian (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.

    Google Scholar 

  • Madden, R. A. and P. R. Julian (1994) Observations of the tropical 40–50 day oscillation: Review. Mon. Wea. Rev., 122, 814–837.

    Google Scholar 

  • Majda, A. J. and J. A. Biello (2004) A multiscale model for tropical intraseasonal oscillations. Proceedings of the National Academy of Sciences U.S.A., 101, 4736–4741.

    CAS  Google Scholar 

  • Majda, A. J. and J. A. Biello (2009) The skeleton of tropical intraseasonal oscillations. Proceedings of the National Academy of Sciences U.S.A., 106, 8417–8422.

    CAS  Google Scholar 

  • Majda, A. J. and R. Klein (2003) Systematic multiscale models for the tropics. J. Atmos. Sci., 60, 393–408.

    Google Scholar 

  • Majda, A. J. and S. N. Stechmann (2009) A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66, 373–392.

    Google Scholar 

  • Maloney, E. D. (2002) An intraseasonal oscillation composite life cycle in the NCAR CCM3.6 with modified convection. J. Climate, 15, 964–982.

    Google Scholar 

  • Maloney, E. D. and D. L. Hartmann (1998) Frictional moisture convergence in a composite life cycle of the Madden–Julian Oscillation. J. Climate, 11, 2387–2403.

    Google Scholar 

  • Maloney, E. D. and D. L. Hartmann (2001) The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 2015–2034.

    Google Scholar 

  • Manabe, S., J. Smagorinsky, and R. F. Strickler (1965) Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Wea. Rev., 93, 769–798.

    Google Scholar 

  • Mapes, B. E. (2000) Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 1515–1535.

    Google Scholar 

  • Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema (2006) The mesoscale convection life cycle: Building block or prototype for large scale tropical waves? Dyn. Atmos. Oceans, 42, 3–29.

    Google Scholar 

  • Matsuno, T. (1966) Quasigeostrophic motions in the equatorial area. J. Meteorol. Soc. Japan, 44, 25–43.

    Google Scholar 

  • Matthews, A. J. (2000) Propagation mechanisms for the Madden–Julian Oscillation. Quart. J. Roy. Meteorol. Soc., 126, 2637–2651.

    Google Scholar 

  • Matthews, A. J., J. M. Slingo, B. J. Hoskins, and P. M. Inness (1999) Fast and slow Kelvin waves in the Madden–Julian Oscillation of a GCM. Quart. J. Roy. Meteorol. Soc., 125, 14731498.

    Google Scholar 

  • Mehta, A. V. and E. A. Smith (1997) Variability of radiative cooling during the Asian summer monsoon and its influence on intraseasonal waves. J. Atmos. Sci., 54, 941–966.

    Google Scholar 

  • Moncrieff M. W. (2004) Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 1521–1538.

    Google Scholar 

  • Moncrieff, M. W. and E. Klinker (1997) Organized convective systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case study. Quart. J. Roy. Meteorol. Soc., 123, 805–827.

    Google Scholar 

  • Moskowitz, B. M. and C. S. Bretherton (2000) An analysis of frictional feedback on a moist equatorial Kelvin mode. J. Atmos. Sci., 57, 2188–2206.

    Google Scholar 

  • Milliff, R. F. and R. A. Madden (1996) The existence and vertical structure of the fast, eastward-moving disturbances in the equatorial troposphere. J. Atmos. Sci., 53, 586–597.

    Google Scholar 

  • Miura, H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi (2007) A Madden–Julian Oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765.

    CAS  Google Scholar 

  • Murakami, T. (1980) Empirical orthogonal function analysis of satellite observed out-going longwave radiation during summer. Mon. Wea. Rev., 108, 205–222.

    Google Scholar 

  • Murakami, T., B. Wang, and S. W. Lyons (1992) Summer monsoons over the Bay of Bengal and the eastern North Pacific. J. Meteorol. Soc. Japan, 70, 191–210.

    Google Scholar 

  • Murphree, T. and H. van den Dool (1988) Calculating winds from time mean sea level pressure fields. J. Atmos. Sci., 45, 3269–3281.

    Google Scholar 

  • Nakazawa, T. (1988) Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteorol. Soc. Japan, 66, 823–839.

    Google Scholar 

  • Nasuno, T., H. Miura, M. Satoh, A. T. Noda, and K. Oouchi (2009) Multi-scale organization of convection in a global numerical simulation of the December 2006 MJO event using explicit moist processes. J. Meteorol. Soc. Japan, 87, 335–345.

    Google Scholar 

  • Neelin, J. D. (1990) A hybrid coupled general circulation model for El Niño studies. J. Atmos. Sci., 47, 674–693.

    Google Scholar 

  • Neelin, J. D. and J.-Y. Yu (1994) Modes of tropical variability under convective adjustment and the Madden–Julian Oscillation, Part I: Analytical theory. J. Atmos. Sci., 51, 18761894.

    Google Scholar 

  • Neelin, J. D., I. M. Held, and K. H. Cook (1987) Evaporation–wind feedback and low- frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 2341–2348.

    Google Scholar 

  • Nitta, T. (1987) Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer monsoon. J. Meteorol. Soc. Japan, 65, 373–390.

    Google Scholar 

  • Ohuchi, K. and M. Yamasaki (1997) Kelvin wave–CISK controlled by surface friction: A possible mechanism of super cloud cluster. J. Meteorol. Soc. Japan, 75, 497–511.

    Google Scholar 

  • Oouchi, K., A. T. Noda, M. Satoh, B. Wang, S.-P. Xie, H. G. Takahashi, and T. Yasunari (2009) Asian summer monsoon simulated by a global cloud-system-resolving model: Diurnal to intra-seasonal variability. Geophys. Res. Lett., 36, L11815, doi: 10.1029/ 2009GL038271.

    Google Scholar 

  • Ooyama, K. (1964) A dynamic model for the study of tropical cyclone development. Geofits. Int. (Mexico), 4, 187–198.

    Google Scholar 

  • Pedlosky, J. (1979) Geophysical Fluid Dynamics. Springer-Verlag, New York, 710 pp.

    Google Scholar 

  • Philander, S. G. H., T. Yamagata, and R. C. Pacanowski (1984) Unstable air–sea interactions in the Tropics. J. Atmos. Sci., 41, 604–613.

    Google Scholar 

  • Randall, D. A., Harshvardhan, D. A. Dazlich, and T. G. Corsetti (1989) Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46, 1943–1970.

    Google Scholar 

  • Raymond, D. J. (2001) A new model of the Madden–Julian Oscillation. J. Atmos. Sci., 58, 28072819.

    Google Scholar 

  • Raymond, D. J. and Z. Fuchs (2007) Convectively coupled gravity and moisture modes in a simple atmospheric model. Tellus, 59A, 627–640.

    Google Scholar 

  • Raymond, D. J. and Z. Fuchs (2009) Moisture modes and Madden–Julian Oscillation. J. Climate, 22, 3031–3046.

    Google Scholar 

  • Rui, H. and B. Wang (1990) Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357–379.

    Google Scholar 

  • Salby, M. L., R. R. Garcia, and H. H. Hendon (1994) Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51, 2344–2367.

    Google Scholar 

  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga (2008) Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations. J. Comp. Phys., 227, 3486–3514.

    Google Scholar 

  • Sengupta, D., B. N. Goswami, and R. Senan (2001) Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys. Res. Lett., 28, 41274130.

    Google Scholar 

  • Shinoda, T. and H. H. Hendon (1998) Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian Ocean. J. Climate, 11, 2668–2685.

    Google Scholar 

  • Shinoda, T., H. H. Hendon, and J. Glick (1998) Intraseasonal variability of surface fluxes and sea surface temperature in the tropical Western Pacific and Indian Oceans. J. Climate, 11, 16851702.

    Google Scholar 

  • Short, D. and K. Nakamura (2000) TRMM radar observations of shallow precipitation over tropical oceans. J. Climate, 13, 4107–4124.

    Google Scholar 

  • Sikka, D. R. and S. Gadgil (1980) On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 1840–1853.

    Google Scholar 

  • Slingo, A. and J. M. Slingo (1988) Response of a general circulation model to cloud long-wave radiative forcing, Part 1: Introduction and initial experiments. Quart. J. Roy. Meteorol. Soc., 114, 1027–1062.

    Google Scholar 

  • Slingo, J. M. and R. A. Madden (1991) Characteristics of the tropical intraseasonal oscillation in the NCAR community climate model. Quart. J. Roy. Meteorol. Soc., 117, 1129–1169.

    Google Scholar 

  • Slingo, J. M., J. S. Boyle, J.-P. Ceron, M. Dix, B. Dugas, W. Ebisuzaki, J. Fyfe, D. Gregory, J.-F. Gueremy, J. Hack et al. (1996) Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dynamics, 12, 325357.

    Google Scholar 

  • Slingo, J. M., P. Inness, R. Neale, S. Woolnough, and G.-Y. Yang (2003) Scale interaction on diurnal to seasonal timescales and their relevance to model systematic errors. Geophys. Ann., 46, 139–155.

    Google Scholar 

  • Sobel, A. H. and H. Gildor (2003) A simple time-dependent model of SST hot spas. J. Climate, 16, 3978–3992.

    Google Scholar 

  • Solodoch, A., W. R. Boos, Z. Kuang, and E. Tziperman (2011) Excitation of intraseasonal variability in the equatorial atmosphere by Yanai wave groups via WISHE-induced convection. J. Atmos. Sci., 68, 210–225.

    Google Scholar 

  • Sperber, K. R. (2003) Propagation and vertical structure of the Madden–Julian Oscillation. Mon. Wea. Rev., 131, 3018–3037.

    Google Scholar 

  • Straub, K. H. and G. N. Kiladis (2003) Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Wea. Rev., 131, 945–960.

    Google Scholar 

  • Sui, C. H. and K. M. Lau (1989) Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere, Part 2: Structure and propagation of mobile wave–CISK modes and their modification by lower boundary forcings. J. Atmos. Sci., 46, 37–56.

    Google Scholar 

  • Takahashi, M. (1987) Theory of the slow phase speed of the intraseasonal oscillation using the wave–CISK. J. Meteorol. Soc. Japan, 65, 43–49.

    Google Scholar 

  • Tian, B., D. E. Waliser, E. J. Fetzer, B. H. Lambrigtsen, Y. L. Yung, and B. Wang (2006) Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 2462–2485.

    Google Scholar 

  • Ting, M. (1994) Maintenance of northern summer stationary waves in a GCM. J. Atmos. Sci., 51, 3286–3308.

    Google Scholar 

  • Tomita, H., H Miura, S. Iga, T. Nasuno, and M. Satoh (2005) A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32, L08805, doi: 10.1029/2005GL022459.

    Google Scholar 

  • Tompkins, A. M. (2001) On the relationship between tropical convection and sea surface temperature. J. Atmos. Sci., 58, 529–545.

    Google Scholar 

  • Tompkins, A. M. and T. Jung (2003) Influence of process interactions on MJO-like convective structures in the IFS model. Available at http://www.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2003/MJO/ws_mjo_tompkins.pdf

  • Waliser, D. E., K. M. Lau, and J. H. Kim (1999) The influence of coupled sea surface temperatures on the Madden–Julian Oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333–358.

    Google Scholar 

  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones (2003a) Potential predictability of the Madden–Julian Oscillation. Bull. Amer. Meteorol. Society, 84, 33–50.

    Google Scholar 

  • Waliser, D. E., K. Jin, I. S. Kang, W. F. Stern, S. D. Schubert, M. L. Wu, K. M. Lau, M. I. Lee, J. Shukla, V. Krishnamurthy et al. (2003b) AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dynamics, 21, 423446.

    Google Scholar 

  • Wang, B. (1988a) Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 2051–2065.

    Google Scholar 

  • Wang, B. (1988b) Comments on “An air–sea interaction model of intraseasonal oscillation in the tropics.” J. Atmos. Sci., 45, 3521–3525.

    Google Scholar 

  • Wang, B. and J. K. Chen (1989) On the zonal-scale selection and vertical structure of equatorial intraseasonal waves. Quart. J. Roy. Meteorol. Soc., 115, 1301–1323.

    Google Scholar 

  • Wang, B. and T. Li (1993) A simple tropical atmosphere model of relevance to short-term climate variations. J. Atmos. Sci., 50, 260–284.

    Google Scholar 

  • Wang, B. and T. Li (1994) Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 1386–1400.

    Google Scholar 

  • Wang, B. and F. Liu (2011) A model for scale interaction in the Madden–Julian Oscillation. J. Atmos. Sci. (accepted).

    Google Scholar 

  • Wang, B. and H. Rui (1990a) Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial beta-plane. J. Atmos. Sci., 47, 397–413.

    Google Scholar 

  • Wang, B. and H. Rui (1990b) Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteorol. Atmos. Phys., 44, 43–61.

    Google Scholar 

  • Wang, W. and M. E. Schlesinger (1999) The dependence on convective parametrization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 1423–1457.

    Google Scholar 

  • Wang, B. and X. Xie (1996) Low-frequency equatorial waves in vertically sheared zonal flow, Part I: Stable waves. J. Atmos. Sci., 53, 449–467.

    Google Scholar 

  • Wang, B. and X. Xie (1997) A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 72–86.

    Google Scholar 

  • Wang, B. and X. Xie (1998) Coupled modes of the warm pool climate system, Part I: The role of air–sea interaction in maintaining Madden–Julian Oscillation. J. Atmos. Sci., 11, 21162135.

    Google Scholar 

  • Wang, B. and X. Xu (1997) Northern Hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J. Climate, 10, 1071–1085.

    Google Scholar 

  • Wang, B. and Y. Xue (1992) Behavior of a moist Kelvin wave packet with nonlinear heating. J. Atmos. Sci., 49, 549–559.

    Google Scholar 

  • Wang, B. and Q. Zhang (2002) Pacific–East Asian teleconnection, Part II: How the Philippine Sea anticyclone established during development of El Niño. J. Climate, 15, 3252–3265.

    Google Scholar 

  • Wang, B., I.-S. Kang, and J.-Y. Lee (2004) Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J. Climate, 17, 803–818.

    Google Scholar 

  • Wang, B., P. J. Webster, and H. Teng (2005) Antecedents and self-induction of the active- break Indian summer monsoon. Geophys. Res. Lett., 32, L04704.

    Google Scholar 

  • Webster, P. J. (1983) Mechanisms of monsoon low-frequency variability: Surface hydrological effects. J. Atmos. Sci., 40, 2110–2124.

    Google Scholar 

  • Webster, P. J. (1994) The role of hydrological processes in ocean–atmosphere interactions. Rev. Geophys., 32, 427–476.

    Google Scholar 

  • Weickmann, K. M., (1983) Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Wea. Rev., 111, 1838–1858.

    Google Scholar 

  • Weller, R. A. and S. P. Anderson (1996) Surface meteorology and air–sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean–atmosphere Response Experiment. J. Climate, 9, 1959–1990.

    Google Scholar 

  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins (2000) The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13, 2086–2104.

    Google Scholar 

  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins (2001) The organization of tropical convection by intraseasonal sea surface temperature anomalies. Quart. J. Roy. Meteorol. Soc., 127, 887–907.

    Google Scholar 

  • Wu, M. L. C., S. Schubert, I. S. Kang, and D. E. Waliser (2002) Forced and free intra- seasonal variability over the south Asian monsoon region simulated by 10 AGCMs. J. Climate, 15, 2862–2880.

    Google Scholar 

  • Wu, Z. (2003) A shallow CISK, deep equilibrium mechanism for the interaction between large scale convection and large scale circulations in the tropics. J. Atmos. Sci., 60, 377–392.

    Google Scholar 

  • Xie, S.-P. and A. Kubokawa (1990) On the wave–CISK in the presence of a frictional boundary layer. J. Meteorol. Soc. Japan, 68, 651–657.

    Google Scholar 

  • Xie, S.-P., A. Kubokawa, and K. Hanawa (1993) Evaporation-wind feedback and the organizing of tropical convection on the planetary scale, Part II: Nonlinear evolution. J. Atmos. Sci., 50, 3884–3893.

    Google Scholar 

  • Xie, X. and B. Wang (1996) Low-frequency equatorial waves in vertically sheared zonal flows, Part II: Unstable waves. J. Atmos. Sci., 53, 3589–3605.

    Google Scholar 

  • Yamagata, T. (1987) Simple moist model relevant to the origin of intraseasonal disturbances in the Tropics. J. Meteorol. Soc. Japan, 65, 153–165.

    Google Scholar 

  • Yamagata, T. and Y. Hayashi (1984) Simple diagnostic model for the 30–50 day oscillation in the Tropics. J. Meteorol. Soc. Japan, 62, 709–717.

    Google Scholar 

  • Yamasaki, M. (1969) Large-scale disturbances in the conditionally unstable atmosphere in low latitudes. Papers Meteorol. Geophys., 20, 289–336.

    Google Scholar 

  • Yang, B, X. Fu, and B. Wang (2008) Atmosphere–ocean conditions jointly guide convection of the boreal-summer intraseasonal oscillation: Satellite observations. J. Geophys. Res., 113, D11105, doi: 10.1029/2007JD009276.

    Google Scholar 

  • Yano, J.-I. and K. Emanuel (1991) An improved model of the equatorial troposphere and its coupling with the stratosphere. J. Atmos. Sci., 48, 377–389.

    Google Scholar 

  • Yasunari, T. (1979) Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteorol. Soc. Japan, 57, 227–242.

    Google Scholar 

  • Yasunari, T. (1980) A quasi-stationary appearance of 30–40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteorol. Soc. Japan, 58, 225229.

    Google Scholar 

  • Zhang, C. D. (1996) Atmospheric intraseasonal variability at the surface in the tropical western Pacific Ocean. J. Atmos. Sci., 53, 739–758.

    Google Scholar 

  • Zhang, C. D. (2005) Madden–Julian Oscillation. Rev. Geophys., 43, 1–36.

    Google Scholar 

  • Zhang, C. D. and S. P. Anderson (2003) Sensitivity of intraseasonal perturbations in SST to the structure of the MJO. J. Atmos. Sci., 60, 2196–2207.

    Google Scholar 

  • Zhang, C. D. and H. H. Hendon (1997) Propagating and standing components of the intraseasonal oscillation in tropical convection. J. Atmos. Sci., 54, 741–752.

    Google Scholar 

  • Zhu, B. and B. Wang (1993) The 30–60 day convection seesaw between the tropical Indian and western Pacific Oceans. J. Atmos. Sci., 50, 184–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lau, W.K.M., Waliser, D.E., Wang, B. (2012). Theories. In: Intraseasonal Variability in the Atmosphere-Ocean Climate System. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13914-7_10

Download citation

Publish with us

Policies and ethics