Skip to main content

Manifestations of the Buildup of Screening Pigments in the Optical Properties of Plants

  • Chapter
  • First Online:
Photoprotection in Plants

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 14))

Abstract

Accumulation of screening pigments manifests itself as directional changes in plant optical properties. Understanding the relationships between the magnitude and spectral quality of these changes and the extent of the underlying buildup of screening pigments could provide valuable insights into the status of screening-related photoprotection in plants. This chapter focuses on manifestations of the induction of screening pigments in reflectance and absorption spectra of microalgae and plants and lays a foundation for nondestructive quantification of screening compounds and their efficiency in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Defined as A(λ)=1−T(λ)−R(λ), where R(λ) and T(λ) are the reflectance and transmittance at wavelength λ.

References

  • Asen S, Stewart R, Norris K (1972) Co-pigmentation of anthocyanins in plant tissues and its effect on color. Phytochemistry 11:1139–1144

    Article  CAS  Google Scholar 

  • Awad M, de Jager A, van Westing L (2000) Flavonoid and chlorogenic acid levels in apple fruit: characterisation of variation. Sci Hortic 83:249–263

    Article  CAS  Google Scholar 

  • Awad M, de Jager A, van der Plas L, van der Krol A (2001) Flavonoid and chlorogenic acid changes in skin of ‘Elstar’ and ‘Jonagold’ apples during development and ripening. Sci Hortic 90:69–83

    Article  CAS  Google Scholar 

  • Barnes P, Searles P, Ballare C, Ryel R, Caldwell M (2000) Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies. Physiol Planta 109:274–283

    Article  CAS  Google Scholar 

  • Baur P, Stulle K, Uhlig B, Schönherr J (1998) Absorption von Strahlung im UV-B und Blaulichtbereich von Blattkutikeln ausgewählter Nutzpflanzen. Gartenbauwissenschaft 63:145–152

    Google Scholar 

  • Berner T, Dubinsky Z, Wyman K, Falkowski P (1989) Photoadaptation and the “packace” effect in Dunaliella tertiolecta (Chlorophyceae). J Phycol 25:70–78

    Article  CAS  Google Scholar 

  • Bjorn L, Murphy T (1985) Computer calculation of solar ultraviolet radiation at ground level. Physiol Veg 23:555–561

    Google Scholar 

  • Bornman J (1999) Localisation and functional significance of flavonoids and related compounds. In: Rozema J (ed) Stratospheric ozone depletion: the effects of enhanced UV-B radiation on terrestrial ecosystems. Backhuys, Leiden, pp 59–69

    Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Planta 108:111–117

    Article  CAS  Google Scholar 

  • Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1B. Birkhauser, Basel, pp 13–62

    Google Scholar 

  • Burchard P, Bilger W, Weissenbock G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380

    Article  CAS  Google Scholar 

  • Butler W, Norris K (1960) The spectrophotometry of dense light-scattering material. Arch Biochem Biophys 87:31

    Article  PubMed  CAS  Google Scholar 

  • Caldwell M, Bornman J, Ballare C, Flint S, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–266

    Article  PubMed  CAS  Google Scholar 

  • Cerovic Z et al (2002) The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ 25:1663–1676

    Article  CAS  Google Scholar 

  • Czygan F (1970) Blood-rain and blood-snow: nitrogen-deficient cells of Haematococcus pluvialis and Chlamydomonas nivalis. Arch Mikrobiol 74:69

    Article  PubMed  CAS  Google Scholar 

  • Day T, Vogelmann T, DeLucia E (1992) Are some plant life forms more effective than others in screening out ultraviolet-B radiation? Oecologia 92:513–519

    Article  Google Scholar 

  • Day T, Martin G, Vogelmann T (1993) Penetration of UV-B radiation in foliage: evidence that the epidermis behaves as a non-uniform filter. Plant Cell Environ 16:735–741

    Article  Google Scholar 

  • Day T, Howells B, Rice W (1994) Ultraviolet absorption and epidermal-transmittance spectra in foliage. Physiol Planta 92:207–218

    Article  CAS  Google Scholar 

  • DeLucia E, Day T, Vogelman T (1992) Ultraviolet-B and visible light penetration into needles of two species of subalpine conifers during foliar development. Plant Cell Environ 15:921–929

    Article  Google Scholar 

  • Diaz M, Ball E, Luttge U (1990) Stress-induced accumulation of the xanthophyll rhodoxanthin in leaves of Aloe vera. Plant Physiol Biochem 28:679–682

    CAS  Google Scholar 

  • Fabregas J, Dominguez A, Maseda A, Otero A (2003) Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl Microbiol Biotechnol 61:545–551

    PubMed  CAS  Google Scholar 

  • Feild T, Lee D, Holbrook N (2001) Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol 127:566–574

    Article  PubMed  CAS  Google Scholar 

  • Fukshansky L (1981) Optical properties of plant tissue. In: Smith H (ed) Plants and the daylight spectrum. Springer, Berlin, pp 37–303

    Google Scholar 

  • Fukshansky L, Remisowsky A, McClendon J, Ritterbusch A, Richter T, Mohr H (1993) Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment. Photochem Photobiol 57:538–555

    Article  Google Scholar 

  • Gitelson AA, Merzlyak MN, Chivkunova OB (2001) Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem Photobiol 74:38–45

    Article  PubMed  CAS  Google Scholar 

  • Gitelson A, Gritz Y, Merzlyak M (2003a) Non destructive chlorophyll assessment in higher plant leaves: algorithms and accuracy. J Plant Physiol 160:271–282

    Article  PubMed  CAS  Google Scholar 

  • Gitelson AA, Gritz Y, Merzlyak MN (2003b) Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol 160:271–282

    Article  PubMed  CAS  Google Scholar 

  • Gitelson A, Keydan G, Merzlyak M (2006) Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys Res Lett 33:L11402

    Article  Google Scholar 

  • Gitelson A, Chivkunova O, Merzlyak M (2009) Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am J Bot 96:1861

    Article  PubMed  CAS  Google Scholar 

  • Gonnet J (1999) Colour effects of co-pigmentation of anthocyanins revisited-2. A colorimetric look at the solutions of cyanin co-pigmented by rutin using the CIELAB scale. Food Chem 66:387–394

    Article  CAS  Google Scholar 

  • Gonnet J (2003) Origin of the color of cv. Rhapsody in blue rose and some other so-called “blue” roses. J Agric Food Chem 51:4990–4994

    Article  PubMed  CAS  Google Scholar 

  • Green B, Durnford D (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Biol 47:685–714

    Article  CAS  Google Scholar 

  • Han Q, Shinohara K, Kakubari Y, Mukai Y (2003) Photoprotective role of rhodoxanthin during cold acclimation in Cryptomeria japonica. Plant Cell Environ 26:715–723

    Article  CAS  Google Scholar 

  • Han Q, Katahata S, Kakubari Y, Mukai Y (2004) Seasonal changes in the xanthophyll cycle and antioxidants in sun-exposed and shaded parts of the crown of Cryptomeria japonica in relation to rhodoxanthin accumulation during cold acclimation. Tree Physiol 24:609

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Kloppstech K (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213:953–966

    Article  CAS  Google Scholar 

  • Hughes N, Smith W (2007) Attenuation of incident light in Galax urceolata (Diapensiaceae): concerted influence of adaxial and abaxial anthocyanic layers on photoprotection. Am J Bot 94:784

    Article  PubMed  CAS  Google Scholar 

  • Hughes N, Neufeld H, Burkey K (2005) Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata. New Phytol 168:575–587

    Article  PubMed  CAS  Google Scholar 

  • Kolb C, Pfundel E (2005) Origins of non-linear and dissimilar relationships between epidermal UV absorbance and UV absorbance of extracted phenolics in leaves of grapevine and barley. Plant Cell Environ 28:580–590

    Article  CAS  Google Scholar 

  • Krauss P, Markstadter C, Riederer M (1997) Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ 20:1079–1085

    Article  Google Scholar 

  • Lancaster J, Grant J, Lister C, Taylor M (1994) Skin color in apples: influence of copigmentation and plastid pigments on shade and darkness of red color in five genotypes. J Am Soc Hortic Sci 119:63–69

    CAS  Google Scholar 

  • Markham K (1989) Flavones, flavonols and their glycosides. In: Harborne J, Dey P (eds) Methods in plant biochemistry, vol 1. Academic, London, pp 197–235

    Google Scholar 

  • Markstädter C, Queck I, Baumeister J, Riederer M, Schreiber U, Bilger W (2001) Epidermal transmittance of leaves of Vicia faba for UV radiation as determined by two different methods. Photosynth Res 67:17–25

    Article  PubMed  Google Scholar 

  • Merzlyak MN, Naqvi KR (2000) On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis. J Photochem Photobiol B 58:123–129

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak M, Solovchenko A (2002) Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence. Plant Sci 163:881–888

    Article  CAS  Google Scholar 

  • Merzlyak M, Solovchenko A, Chivkunova O (2002) Patterns of pigment changes in apple fruits during adaptation to high sunlight and sunscald development. Plant Physiol Biochem 40:679–684

    Article  CAS  Google Scholar 

  • Merzlyak M, Solovchenko A, Gitelson A (2003) Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol Technol 27:197–212

    Article  CAS  Google Scholar 

  • Merzlyak MN, Melo TB, Razi Naqvi K (2004) Estimation of leaf transmittance in the near infrared region through reflectance measurements. J Photochem Photobiol B Biol 74:145–150

    Article  CAS  Google Scholar 

  • Merzlyak M, Solovchenko A, Pogosyan S (2005a) Optical properties of rhodoxanthin accumulated in Aloe arborescens Mill. leaves under high-light stress with special reference to its photoprotective function. Photochem Photobiol Sci 4:333–340

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak MN, Solovchenko AE, Smagin AI, Gitelson AA (2005b) Apple flavonols during fruit adaptation to solar radiation: spectral features and technique for non-destructive assessment. J Plant Physiol 162:151–160

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak M et al (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J Phycol 43:833–843

    Article  CAS  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Solovchenko AE, Naqvi KR (2008a) Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. J Exp Bot 59:3903–3911

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak MN, Melo TB, Naqvi KR (2008b) Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: signature analysis, assessment, modelling, and relevance to photoprotection. J Exp Bot 59:349–359

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak M, Chivkunova O, Zhigalova T, Naqvi K (2009) Light absorption by isolated chloroplasts and leaves: effects of scattering and ‘packing’. Photosynth Res 102:31–41

    Article  PubMed  CAS  Google Scholar 

  • Naqvi K, Melу T, Raji B (1997) Assaying of chromophore composition of photosynthetic systems by spectral resolution: application to the light-harvesting complex (LHC II) and total pigment content of higher plants. Spectrochim Acta 53:2229–2234

    Article  Google Scholar 

  • Naqvi KR, Merzlyak MN, Melo TB (2004) Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers–Kronig relations. Photochem Photobiol Sci 3:132–137

    Article  PubMed  CAS  Google Scholar 

  • Nishio J (2000) Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ 23:539–548

    Article  CAS  Google Scholar 

  • Oborne B, Raven J (1986) Light absorption by plants and its implications for photosynthesis. Biol Rev 61:1–60

    Article  Google Scholar 

  • Pietrini F, Massacci A (1998) Leaf anthocyanin content changes in Zea mays L. grown at low temperature: Significance for the relationship between the quantum yield of PS II and the apparent quantum yield of CO2 assimilation. Photosynth Res 58:213–219

    Article  CAS  Google Scholar 

  • Pietrini F, Iannelli M, Massacci A (2002) Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis. Plant Cell Environ 25:1251–1259

    Article  CAS  Google Scholar 

  • Shick J, Dunlap W (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Klisch M, Sinha R, Hader D (2008) Effects of abiotic stressors on synthesis of the mycosporine-like amino acid shinorine in the cyanobacterium Anabaena variabilis PCC 7937. Photochem Photobiol 84:1500–1505

    Article  PubMed  CAS  Google Scholar 

  • Sinha R, Häder D (2007) UV-protectants in cyanobacteria. Plant Sci 174:278–289

    Article  Google Scholar 

  • Smith G, Markham K (1998) Tautomerism of flavonol glucosides: relevance to plant UV protection and flower colour. J Photochem Photobiol A Chem 118:99–105

    Article  CAS  Google Scholar 

  • Solovchenko A, Merzlyak M (2003) Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit. Photochem Photobiol Sci 2:861–866

    Article  PubMed  CAS  Google Scholar 

  • Solovchenko A, Merzlyak M (2008) Screening of visible and UV radiation as a photoprotective mechanism in plants. Russ J Plant Physiol 55:719–737

    Article  CAS  Google Scholar 

  • Solovchenko A, Schmitz-Eiberger M (2003) Significance of skin flavonoids for UV-B-protection in apple fruits. J Exp Bot 54:1977–1984

    Article  PubMed  CAS  Google Scholar 

  • Solovchenko A, Chivkunova O, Merzlyak M, Reshetnikova I (2001) A spectrophotometric analysis of pigments in apples. Russ J Plant Physiol 48:693–700

    Article  CAS  Google Scholar 

  • Solovchenko A, Khozin-Goldberg I, Cohen Z, Merzlyak M (2009) Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa. J Appl Phycol 21:361–366

    Article  CAS  Google Scholar 

  • Steele M, Gitelson A, Rundquist D, Merzlyak M (2009) Nondestructive estimation of anthocyanin content in grapevine leaves. Am J Enol Vitic 60:87

    CAS  Google Scholar 

  • Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356

    Article  PubMed  CAS  Google Scholar 

  • Strack D, Wray V (1989) Anthocyanins. In: Harborne J, Dey P (eds) Methods in plant biochemistry, vol 1. Academic, London, pp 325–356

    Google Scholar 

  • Sun J, Nishio J (2001) Why abaxial illumination limits photosynthetic carbon fixation in spinach leaves. Plant Cell Physiol 42:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Nishio J, Vogelmann T (1998) Green light drives CO2 fixation deep within leaves. Plant Cell Physiol 39:1020–1026

    Article  CAS  Google Scholar 

  • Taroni P, Pifferi A, Torricelli A, Comelli D, Cubeddu R (2003) In vivo absorption and scattering spectroscopy of biological tissues. Photochem Photobiol Sci 2:124–129

    Article  PubMed  CAS  Google Scholar 

  • Ustin S, Jacquemoud S, Govaerts Y (2001) Simulation of photon transport in a three-dimensional leaf: implications for photosynthesis. Plant Cell Environ 24:1095–1103

    Article  Google Scholar 

  • Vidhyavathi R, Venkatachalam L, Sarada R, Ravishankar G (2008) Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J Exp Bot 59:1409–1418

    Article  PubMed  CAS  Google Scholar 

  • Vogelmann T (1993) Plant tissue optics. Annu Rev Plant Biol 44:231–251

    Article  Google Scholar 

  • Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124

    Article  CAS  Google Scholar 

  • Weger H, Silim S, Guy R (1993) Photosynthetic acclimation to low temperature by western red cedar seedlings. Plant Cell Environ 16:711–717

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Solovchenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Solovchenko, A. (2010). Manifestations of the Buildup of Screening Pigments in the Optical Properties of Plants. In: Photoprotection in Plants. Springer Series in Biophysics, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13887-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13887-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13886-7

  • Online ISBN: 978-3-642-13887-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics