Skip to main content

Organic Semiconductors

  • Chapter
  • First Online:
The Physics of Semiconductors

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

Organic semiconductors are based on carbon compounds. The main structural difference from inorganic semiconductors is the bond based on sp2 hybridization (cf. Sect. 2.2.3) as present in benzene (and graphite). Diamond, although consisting of 100% carbon, is not considered an organic semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.P. Debye, E.M. Conwell, Phys. Rev. 93, 693 (1954)

    Article  ADS  Google Scholar 

  2. C.L. Braun, Organic Semiconductors. Handbook on Semiconductors, vol. 3 (North Holland, Amsterdam, 1982), pp. 857–73

    Google Scholar 

  3. W. Br¨utting (ed.), Physics of Organic Semiconductors (Wiley-VCH, Weinheim, 2005)

    Google Scholar 

  4. Th.U. Kampen, Low Molecular Weight Organic Semiconductors (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  5. D. Braun, A. Heeger, Appl. Phys. Lett. 58, 1982 (1991)

    Article  ADS  Google Scholar 

  6. A. McL. Mathieson, J. Monteath Robertson, V.C. Sinclair, Acta Cryst. 3, 245 (1950)

    Article  Google Scholar 

  7. N. Karl, High purity organic molecular crystals in Crystals: Growth, Properties and Applications, vol. 4, ed. by H.C. Freyhardt (Springer, Berlin, 1980), p. 1

    Google Scholar 

  8. N. Karl, J. Cryst. Growth 99, 1009 (1990)

    Article  ADS  Google Scholar 

  9. Ch. Kloc, P.G. Simpkins, T. Siegrist, R. A. Laudise, J. Cryst. Growth 182, 416 (1997)

    Article  ADS  Google Scholar 

  10. R.A. Laudise, Ch. Kloc, P.G. Simpkins, T. Siegrist, J. Cryst. Growth 187, 449 (1998)

    Article  ADS  Google Scholar 

  11. M. Mas-Torrent, M. Durkut, P. Hadley, X. Ribas, C. Rovira, J. Am. Chem. Soc. 126, 984 (2004)

    Article  Google Scholar 

  12. M. Campione, R. Ruggerone, S. Tavazzi, M. Moret, J. Mat. Chem. 15, 2437 (2005)

    Article  Google Scholar 

  13. A. Curioni, W. Andreoni, R. Treusch, F.J. Himpsel, E. Haskal, P. Seidler, C. Heske, S. Kakar, T. van Buuren, L.J. Terminello, Appl. Phys. Lett. 72, 1575 (1998)

    Article  ADS  Google Scholar 

  14. M. Oehzelt, A. Aichholzer, R. Resel, G. Heimel, E. Venuti, R.G. Della Valle, Phys. Rev. B 74, 104103 (2006)

    Article  ADS  Google Scholar 

  15. A. Kahn, N. Koch, W. Gao, J. Polymer Sc.: Part B: Polymer Phys. 41, 2529–48 (2003)

    Article  ADS  Google Scholar 

  16. B.A. Gregg, S.-G. Chen, H.M. Branz, Appl. Phys. Lett. 84, 1707 (2004)

    Article  ADS  Google Scholar 

  17. M. Pfeiffer, A. Beyer, T. Fritz, K. Leo, Appl. Phys. Lett. 73, 3202 (1998)

    Article  ADS  Google Scholar 

  18. B.A. Gregg, S.-G. Chen, R.A. Cormier, Chem. Mater. 16, 4586 (2004)

    Article  Google Scholar 

  19. G.F. Neumark, Phys. Rev. B 5, 408 (1972)

    Article  ADS  Google Scholar 

  20. A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.-P. Su, Rev. Mod. Phys. 60, 781 (1988)

    Article  ADS  Google Scholar 

  21. P.W.M. Blom, M.C.J.M. Vissenberg, Mat. Sci Engin. 27, 53 (2000)

    Article  Google Scholar 

  22. L.B. Schein, Phys. Rev. B 15, 1024 (1977)

    Article  ADS  Google Scholar 

  23. L.B. Schein, C.B. Duke, A.R. McGhie, Phys. Rev. Lett. 40, 197 (1978)

    Article  ADS  Google Scholar 

  24. L. Li, G. Meller, H. Kosina, Microelectr. J. 38, 47 (2007)

    Article  Google Scholar 

  25. Y. Kawasumi, I. Akai, T. Karasawa, Int. J. Mod. Phys. B 15, 3825 (2001)

    Article  ADS  Google Scholar 

  26. M.A. Baldo, S.R. Forrest, Phys. Rev. B 62, 10958 (2000)

    Article  ADS  Google Scholar 

  27. W. Humbs, H. Zhang, M. Glasbeek, Chem. Phys. 254, 319 (2000)

    Article  Google Scholar 

  28. Z. Vardeny, E. Ehrenfreund, J. Shinar, F. Wudl, Phys. Rev. B 35, 2498 (1987)

    Article  ADS  Google Scholar 

  29. J.-W. van der Horst, P.A. Bobbert, M.A.J. Michels, Phys. Rev. B 66, 035206 (2002)

    Article  ADS  Google Scholar 

  30. A. Baldo, D.F. O’Brien, M.E. Thompson, S.R. Forrest, Phys. Rev. B 60, 14422 (1999)

    Article  ADS  Google Scholar 

  31. M.A. Baldo, M.E. Thompson, S.R. Forrest, Nature 403, 750 (2000)

    Article  ADS  Google Scholar 

  32. M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest, Appl. Phys. Lett. 75, 4 (1999)

    Article  ADS  Google Scholar 

  33. A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Nature 395, 151 (1998)

    Article  ADS  Google Scholar 

  34. C. Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, J. Appl. Phys. 90, 5048 (2001)

    Article  ADS  Google Scholar 

  35. T. F¨orster, Discuss. Faraday Soc. 27, 7–17 (1959)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Grundmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grundmann, M. (2010). Organic Semiconductors. In: The Physics of Semiconductors. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13884-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13884-3_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13883-6

  • Online ISBN: 978-3-642-13884-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics