Skip to main content

A Logic-Based Approach to Relation Extraction from Texts

  • Conference paper
Inductive Logic Programming (ILP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5989))

Included in the following conference series:

Abstract

In recent years, text mining has moved far beyond the classical problem of text classification with an increased interest in more sophisticated processing of large text corpora, such as, for example, evaluations of complex queries. This and several other tasks are based on the essential step of relation extraction. This problem becomes a typical application of learning logic programs by considering the dependency trees of sentences as relational structures and examples of the target relation as ground atoms of a target predicate. In this way, each example is represented by a definite first-order Horn-clause. We show that an adaptation of Plotkin’s least general generalization (LGG) operator can effectively be applied to such clauses and propose a simple and effective divide-and-conquer algorithm for listing a certain set of LGGs. We use these LGGs to generate binary features and compute the hypothesis by applying SVM to the feature vectors obtained. Empirical results on the ACE–2003 benchmark dataset indicate that the performance of our approach is comparable to state-of-the-art kernel methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banko, M., Etzioni, O.: The tradeoffs between open and traditional relation extraction. In: Proc. of ACL 2008: HLT, pp. 28–36 (2008)

    Google Scholar 

  2. Blohm, S., Cimiano, P.: Scaling up pattern induction for web relation extraction through frequent itemset mining. In: Adrian, B., Neumann, G., Troussov, A., Popov, B. (eds.) Proc. of the KI 2008 Workshop on Ontology-Based Information Extraction Systems (2008)

    Google Scholar 

  3. Boley, M., Horváth, T., Poigné, A., Wrobel, S.: Listing closed sets of strongly accessible set systems with applications to data mining (unpublished manuscript)

    Google Scholar 

  4. Bundschus, M., Dejori, M., Stetter, M., Tresp, V., Kriegel, H.-P.: Extraction of semantic biomedical relations from text using conditional random fields. BMC Bioinformatics 9 (2008)

    Google Scholar 

  5. Bunescu, R.C., Mooney, R.J.: A shortest path dependency kernel for relation extraction. In: Proc. of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 724–731 (2005)

    Google Scholar 

  6. Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In: Proc. of the 42nd Annual Meeting on Association for Computational Linguistics (ACL), pp. 423–429 (2004)

    Google Scholar 

  7. Fellbaum: WordNet: An Electronic Lexical Database (Language, Speech, and Communication). The MIT Press, Cambridge (1998)

    Google Scholar 

  8. Gottlob, G.: Subsumption and implication. Information Processing Letters 24(2), 109–111 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Harabagiu, S., Bejan, C.A., Morarescu, P.: Shallow semantics for relation extraction. In: Proc. of the Nineteenth International Joint Conference on Artificial Intelligence, IJCAI (2005)

    Google Scholar 

  10. Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Proc. of the 15th International Conference on Computational Linguistics (COLING), pp. 539–545 (1992)

    Google Scholar 

  11. Horváth, T., Turán, G.: Learning logic programs with structured background knowledge. Artificial Intelligence 128(1-2), 31–97 (2000)

    Article  Google Scholar 

  12. Horváth, T., Wrobel, S.: Towards discovery of deep and wide first-order structures: A case study in the domain of mutagenicity. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 100–112. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Joachims, T.: Making large-scale support vector machine learning practical. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in kernel methods: support vector learning, pp. 169–184. MIT Press, Cambridge (1999)

    Google Scholar 

  14. Kolaitis, P., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. Journal of Computer and System Sciences 61, 302–332 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mitchell, A., Strassel, S., Przybocki, M., Davis, J., Doddington, G., Grishman, R., Meyers, A., Brunstein, A., Ferro, L., Sundheim, B.: Ace-2 version 1.0. Linguistic Data Consortium, Philadelphia (2003)

    Google Scholar 

  16. Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Pantel, P., Pennacchiotti, M.: Espresso: leveraging generic patterns for automatically harvesting semantic relations. In: Proc. of the 44th annual meeting of the Association for Computational Linguistics (ACL), pp. 113–120 (2006)

    Google Scholar 

  18. Plotkin, G.: A note on inductive generalisation. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 153–163. Elsevier, North Holland, New York (1970)

    Google Scholar 

  19. Reichartz, F., Korte, H., Paass, G.: Composite kernels for relation extraction. In: Proc. of the 47nd Annual Meeting on Association for Computational Linguistics (ACL), pp. 365–368 (2009)

    Google Scholar 

  20. Reichartz, F., Korte, H., Paass, G.: Dependency tree kernels for relation extraction from natural language text. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 270–285. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. Journal of Machine Learning Research 3, 1083–1106 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, M., Zhang, J., Su, J.: Exploring syntactic features for relation extraction using a convolution tree kernel. In: Proc. of the main conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics (NAACL), pp. 288–295 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horváth, T., Paass, G., Reichartz, F., Wrobel, S. (2010). A Logic-Based Approach to Relation Extraction from Texts. In: De Raedt, L. (eds) Inductive Logic Programming. ILP 2009. Lecture Notes in Computer Science(), vol 5989. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13840-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13840-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13839-3

  • Online ISBN: 978-3-642-13840-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics